Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64961
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳文進(Wen-Chin Chen)
dc.contributor.authorYun-Hsuan Linen
dc.contributor.author林昀宣zh_TW
dc.date.accessioned2021-06-16T23:10:29Z-
dc.date.available2021-03-03
dc.date.copyright2020-03-03
dc.date.issued2019
dc.date.submitted2020-02-24
dc.identifier.citation[1] S. Bako, S. Darabi, E. Shechtman, J. Wang, K. Sunkavalli, and P. Sen. Removing shadows from images of documents. In Asian Conference on Computer Vision, pages 173–183. Springer, 2016.
[2] C. Clausner, A. Antonacopoulos, and S. Pletschacher. Icdar2017 competition on recognition of documents with complex layouts-rdcl2017. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), volume 1, pages 1404–1410. IEEE, 2017.
[3] X. Huang, G. Hua, J. Tumblin, and L. Williams. What characterizes a shadow boundary under the sun and sky? In 2011 International Conference on Computer Vision, pages 898–905. IEEE, 2011.
[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125–1134, 2017.
[5] S. Jung, M. A. Hasan, and C. Kim. Water-filling: An efficient algorithm for digitized document shadow removal. In Asian Conference on Computer Vision, pages 398–414. Springer, 2018.
[6] N. Kligler, S. Katz, and A. Tal. Document enhancement using visibility detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2374–2382, 2018.
[7] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
[8] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.
[9] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Gradcam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, pages 618–626, 2017.
[10] R. W. Smith. Hybrid page layout analysis via tab-stop detection. In 2009 10th International Conference on Document Analysis and Recognition, pages 241–245. IEEE, 2009.
[11] T. F. Y. Vicente, L. Hou, C.-P. Yu, M. Hoai, and D. Samaras. Large-scale training of shadow detectors with noisily-annotated shadow examples. In European Conference on Computer Vision, pages 816–832. Springer, 2016.
[12] Y. Vicente, F. Tomas, M. Hoai, and D. Samaras. Leave-one-out kernel optimization for shadow detection. In Proceedings of the IEEE International Conference on Computer Vision, pages 3388–3396, 2015.
[13] J. Wang, X. Li, and J. Yang. Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1788–1797, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64961-
dc.description.abstract在本篇論文之中,我們提出一個深度學習模型BEDSR-Net,專門設計為對一般文件影像進行陰影去除。文件通常具有一個共通的全局背景顏色的資訊,因此我們利用深度學習方式使模型學到如何預測整張文件的全局背景顏色資訊。在模型訓練的過程,模型亦同時掌握了文件影像中陰影和非陰影的位置資訊,透過將模型的中間產物特徵圖視覺化以熱度圖方式呈現,此熱度圖可被定位為表達了文件影像中陰影分布的陰影遮罩。透過全局背景顏色以及陰影位置資訊的協助,我們提出的深度學習架構BEDSR-Net將有效對原圖進行陰影去除,且在大部分的評比之中,我們的效果在各方數據均表現優異,整體來說更優於前人的方法。除此之外,BEDSR-Net僅在合成資料集上進行訓練,應用在實際評比用資料集時表現依舊亮眼,這也反映出我們的模型架構對於表現的穩定度上是有明顯的幫助。在本論文中,對於文件影像陰影去除這個任務,我們收集了兩個資料集,分別為合成影像資料集SDSRD以及實際影像資料集DSRD,前者提供了深度學習在這個領域中足夠的訓練資料,並在文件種類和光線複雜度的這兩個面向中達到了足夠的豐富度;後者更涵蓋了大量複雜文件,可作為一個比較模型表現優劣上更泛用的資料集。zh_TW
dc.description.abstractIn this paper, we propose a novel deep neural network architecture, named BEDSR-Net, which is designed to remove shadow from document images. With our observation that documents usually have single global background color, we utilize deep learning technique to detect the color from a document image. While training process, our model is able to understand the shadow distribution in an image, including intensity and location. We further visualize the knowledge about shadow distribution of our model in the form of heatmap. The heatmap is capable of precisely denoting the shadow location. With the assistance of global background color and the heatmap, our model, BEDSR-Net, achieves state-of-the-art in most evaluation comparison with previous works in the field of document images shadow removal. Also, our model, only trained with a synthetic dataset, still outperforms others in real benchmark datasets, which indeed shows our proposed model's stability and robustness. Besides, we collect two datasets in this task, including a synthetic dataset (SDSRD) and a real dataset (DSRD). The former one enables the training process of deep learning approach in this task while the latter one can be served as a much more general benchmark dataset. Both SDSRD and DSRD are aimed at capturing more diverse scenario.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:10:29Z (GMT). No. of bitstreams: 1
ntu-108-R06944059-1.pdf: 27112551 bytes, checksum: 994bb1e5d17510519084691a1590b631 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Related Work 3
2.1 Generic images shadow removal . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Document images shadow removal . . . . . . . . . . . . . . . . . . . . . 4
3 The Proposed Approach 5
3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.1 Mixture model of ST-CGAN and Bako . . . . . . . . . . . . . . 7
3.1.2 ST-CGAN Plus Background Estimation (ST-CGAN-BG) . . . . . 9
3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Background Estimation Document Shadow Removal Network (BEDSR-Net) 12
3.3.1 Global Background Color Estimator Network (GBCE-Net) . . . . 12
3.3.2 Shadow Removal Network(SR-Net) . . . . . . . . . . . . . . . . 15
3.4 Network Architecture and Implementation Details . . . . . . . . . . . . . 17
3.4.1 Global Background Color Estimator Network(GBCE-Net) . . . . 17
3.4.2 Shadow Remover Network(SR-Net) . . . . . . . . . . . . . . . . 17
3.4.3 Training Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Dataset 18
4.1 Document Shadow Removal Dataset (DSRD) . . . . . . . . . . . . . . . 18
4.1.1 Preparation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Properties of DSRD . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Synthetic Document Shadow Removal Dataset (SDSRD) . . . . . . . . . 23
4.3 Summary of Document Shadow Removal Datasets . . . . . . . . . . . . 25
5 Experiment 27
5.1 Evaluation Methods and Metrics . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Pixel-wise comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Visual quality comparison . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Why global background color? . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Shadow mask vs. heatmap . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Group Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6.1 Quantitative experiments on group comparison . . . . . . . . . . 34
5.6.2 Qualitative experiments on group comparison . . . . . . . . . . . 36
6 Conclusion 39
Bibliography 40
dc.language.isoen
dc.subject陰影去除zh_TW
dc.subject文件影像處理zh_TW
dc.subject深度學習zh_TW
dc.subject條件生成對抗式網路zh_TW
dc.subjectConditional Generative Adversarial Networken
dc.subjectShadow Removalen
dc.subjectDeep Learningen
dc.subjectDocument Image Processingen
dc.title基於深度學習方法之單張文件影像陰影去除zh_TW
dc.titleDeep Learning-based Approach for Single Document
Image Shadow Removal
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.coadvisor莊永裕(Yung-Yu Chuang)
dc.contributor.oralexamcommittee陳駿丞(Jun-Cheng Chen),林彥宇(Yen-Yu Lin),王鈺強(Yu-Chiang Wang)
dc.subject.keyword陰影去除,文件影像處理,深度學習,條件生成對抗式網路,zh_TW
dc.subject.keywordShadow Removal,Document Image Processing,Deep Learning,Conditional Generative Adversarial Network,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201902033
dc.rights.note有償授權
dc.date.accepted2020-02-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
26.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved