請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64959
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉致為(Chee Wee Liu) | |
dc.contributor.author | Che-Yu Yeh | en |
dc.contributor.author | 葉哲宇 | zh_TW |
dc.date.accessioned | 2021-06-16T23:10:24Z | - |
dc.date.available | 2022-12-31 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | [1] Rozalia Beica, Charles Sharbono, Tom Ritzdorf, “Through Silicon Via Copper
Electrodeposition for 3D Integration”, IEEE Electronic Components and Technology Conference, 2008. [2] Pei-Jer Tzeng, Yu-Chen Hsin, Jui-Chin Chen, Shang-Chun Chen, Chien-Ying Wu, Wen-Li Tsai, Chung-Chih Wang, Chi-Hon Ho, Chien-Chou Chen, Yi-Feng Hsu, Shang-Hung Shen, Sue-Chen Liao, Chun-Hsien Chien, Hsiang-Hung Chang, Cha-Hsin Lin, Tzu-Kun Ku, and Ming-Jer Kao, “Key Enabling Technologies of 300mm 3DIC Process Integration”, VLSI Technology, Systems, and Applications, 2012. [3] Y. J. Chang, C. T. Ko, Z.C. Hsiao, T. H. Yu, Y. H. Chen, W. C. Lo, and K. N. Chen, “Electrical Characterization and Reliability Investigations of Cu TSVs with Wafer-Level Cu/Sn-BCB Hybrid Bonding”, VLSI Technology, Systems, and Applications, 2012. [4] Aditya P. Karmarkar, “Performanace and Reliability Analysis of 3D-Integration Structures Employing Through Silicon Via (TSV)” IEEE CFP09RPS-CDR 47th Annual International Reliability. [5] Kah-Wee Ang, Jianqiang Lin, Chih-Hang Tung, Narayanan Balasubramanian, Ganesh S. Samudra, and Yee-Chia Yeo, “Strained n-MOSFET With Embedded Source/Drain Stressors and Strain-Transfer Structure (STS) for Enhanced Transistor Performance,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 3, (2008). [1] T. R. Kane and R. D. Mindlin, “High-frequency extensional vibrations of plates,” J. Appl. Mech., vol. 23, pp. 277–283, 1956. [2] A. Kotousov and C. H. Wang, “Three-dimensional stress constraint in an elastic plate with a notch,” Int. J. Solids Struct., vol. 39, no. 16, pp. 4311– 4326, Aug. 2002. [3] L. D. Landau and E. M. Lifshitz, “Theory of elasticity,” in Course of Theoretical Physics, 3rd ed. New York: Pergamon Press, 1986, p. 21. [4] T. Chang, W. Guo, and H. R. Dong, “Three-dimensional effects for through-thickness cylindrical inclusions in an elastic plate,” J. Strain Anal. Eng. Des., vol. 36, no. 3, pp. 277–286, Jan. 2001. [5] S. Srinivas and A. K. Rao, “Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates,” Int. J. Solids Struct., vol. 6, no. 11, pp. 1463–1481, Nov. 1970. [6] W. A. Brantley, “Calculated elastic constants for stress problems associated with semiconductor devices,” J. Appl. Phys., vol. 44, no. 1, pp. 534– 535, Jan. 1973. [1] Nuo Xu, Byron Ho, Munkang Choi, Victor Moroz, and Tsu-Jae King Liu, “Effectiveness of Stressors in Aggressively Scaled FinFETs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 6, (2012). [2] Francesco Conzatti, Nicola Serra, David Esseni, Marco De Michielis, Alan Paussa, Pierpaolo Palestri, Luca Selmi, Stephen M. Thomas, Terence E. Whall, David Leadley, E. H. C. Parker, Liesbeth Witters, Martin J. Hytch, Etienne Snoeck, T. J. Wang, W. C. Lee, Gerben Doornbos, Georgios Vellianitis, Mark J. H. van Dal, and R. J. P. Lander, “Investigation of Strain Engineering in FinFETs Comprising Experimental Analysis and Numerical Simulations,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 6, (2011). [3] Shu-Han Hsu, Chun-Lin Chu, Wen-Hsien Tu, Yen-Chun Fu, Po-Jung Sung, Hung-Chih Chang, Yen-Ting Chen, Li-Yaw Cho, William Hsu, Guang-Li Luo, C. W. Liu, Chenming Hu, and Fu-Liang Yang, “Nearly Defect-free Ge Gate-All-Around FETs on Si Substrates,” IEDM, pp. 35.2.1 - 35.2.4, (2011). [4] Kah-Wee Ang, Jianqiang Lin, Chih-Hang Tung, Narayanan Balasubramanian, Ganesh S. Samudra, and Yee-Chia Yeo, “Strained n-MOSFET With Embedded Source/Drain Stressors and Strain-Transfer Structure (STS) for Enhanced Transistor Performance,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 3, (2008). [5] Geert Eneman, Peter Verheyen, Rita Rooyackers, Faran Nouri, Lori Washington,Robert Schreutelkamp, Victor Moroz, Lee Smith, An De Keersgieter, Malgorzata Jurczak, and Kristin De Meyer, “Scalability of the Si1−xGex Source/Drain Technology for the 45-nm Technology Node and Beyond,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 7, pp. 1647-1656, (2006). [6] P. Ranade, T. Ghani, K. Kuhn, K. Mistry, S. Pae, L. Shifren,M. Stettler, K. Tone, S. Tyagi, and M. Bohr, “High performance 35 nm Lgate CMOS transistors featuring NiSi metal gate (FUSI), uniaxial strained silicon channels and 1.2 nm gate oxide,” IEDM Tech. Dig., pp. 227–230 (2005). [7] S. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stresses Si and Ge channel MOSFETs,” IEDM Tech. Dig., pp. 225–228, (2004). [8] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Okoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A novel strained enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films,” IEDM Tech. Dig., pp. 213–216, (2004). [9] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., pp. 978–980, (2003). [10] M.D.Giles, M.Armstrong, C.Auth, S.M.Cea, T.Ghani, T.Hoffmann, R.Kotlyar, P.Matagne, K.Mistry, R.Nagisetty, B.Obradovic, R.Shaheed, L.Shifren, M.Stettler, S.Tyagi, X.Wang, C.Weher, K.Zawadzki, “Understanding Stress Enhanced Performance in Intel 90nm CMOS Technology,” Symposium on VLSl Technology Digest of Technical Papers, pp. 118-119, (2004). [11] Z. Luo, Y. Chong, J. Kim, N. Rovedo, B. Greene, S. Panda, T. Sato, J. Holt, D. Chidambarrao, J. Li, R. Davis, A. Madan, A. Turansky, O. Gluschenkov, R. Lindsay, A. Ajmera, J. Lee, S. Mishra, R. Amos, D. Schepis, H. Ng, and K. Rim, “Design of high performance PFETs with strained Si channel and laser anneal,” IEDM Tech. Dig., pp. 495–498, (2005). [12] F. Nouri, P. Verheyen, L. Washington, V. Moroz, I. De Wolf, M. Kawaguchi, S. Biesemans, R. Schreutelkamp, Y. Kim, M. Shen, X. Xu, R. Rooyackers, M. Jurczak, G. Eneman, K. De Meyer, L. Smith, D. Pramanik, H. Forstner, S. Thirupapuliyur, and G. Higashi, “A systematic study of trade-offs in engineering a locally strained pMOSFET,” IEDM Tech. Dig., pp. 1055–1058, (2004). [13] F.R.N. Nabarro, “The mathematical theory of stationary dislocations,” Adv. Phys., vol. 1, pp. 269-395, 1952. [14] V. Moroz, G. Eneman, P. Verheyen, F. Nouri, L. Washington, L. Smith, M. Jurczak, and D. Pramanik, “The impact of layout on stress-enhanced PMOS performance,” Proc. SISPAD, pp. 143–146, (2005). [15] Cory E. Weber, Stephen M. Cea, Hemant Deshpande, Oleg Golonzka, and Mark Y. Liu “Modeling of NMOS Performance Gains from Edge Dislocation Stress” IEEE IEDM, 2011. [16] W. A. Brantley, “Calculated elastic constants for stress problems associated with semiconductor devices,” J. Appl. Phys., vol. 44, no. 1, pp. 534–535, (1973). [17] Jakub Kedzierski, Meikei Ieong, Edward Nowak, Thomas S. Kanarsky, Ying Zhang, Ronnen Roy, Diane Boyd, David Fried, and H.-S. Philip Wong, “Extension and Source/Drain Design for High-Performance FinFET Devices,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, pp. 952-958, (2003). [18] A. Hikavyy, W. Vanherle, B. Vincent, J. Dekoster, H. Bender, A. Moussa, L. Witters, T. Hoffman, and R. Loo, “Growth of high Ge content SiGe on (110) oriented Si wafers,” Thin Solid Films, VOL. 520, pp. 3179–3184, (2012). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64959 | - |
dc.description.abstract | IC 上可容納的電晶體數目,約每隔18 個月便會增加一倍,性能也將提升一
倍,為了遵循摩爾定律,過去的方式是將電晶體的尺寸不停的縮小,然而在22 nm節點以下由於曝光顯影的問題,製程變得相當的困難,取而代之的方法主要有從結構上改變成三維結構,例如鰭式場效應電晶體,又或者是將封裝的方式改成三維堆疊,例如矽穿孔技術,如此以來便可以在相同的面積上,增加更多的效能。 矽穿孔技術利用金屬將孔洞填滿以達到傳遞訊號的功能,由於金屬和半導體 材料的熱膨脹係數相差很大,導致製程完後回到常溫會產生相當大的應變,此應 變會改變電晶體的特性使元件缺乏一致性而難以控制甚至會破壞元件。 在本論文中,我們將計算由矽穿孔技術所造成的應變,進而分析它對於週遭 電晶體的影響。我們一開始先利用二維的模型定義keep-out zone,發現孔洞排成圓形的方式會減低keep-out zone 的大小,如此可以使晶圓上放入更多的電晶體。接著為了符合真實的情況,我們由Kane-Mindlin 的理論成功得到三維情況下應變分佈的解析解,因為我們的解析解只適用於晶圓的中間平面,但元件一般是在晶圓的表面,所以我們必須乘上一個常數去修正,我們將商業套裝軟體的結果與解析解進行比較,發現誤差非常的小,另外我們也用重疊原理考慮多個矽穿孔技術所造成的應力分佈,經由一些修正,我們也可以得到相當接近的結果。最後我們再進一步的考慮如果材料是非各向等性會和我們在假設各向等性下得到的解析解有多少的誤差,經由修正後,結果也非常的好。 90 nm 節點時所使用的應力源應變技術也可以用在未來的三維電晶體上,本 論文的另一部份將談到三維鰭式場效應電晶體應力源的應力分析,一開始我們先 回顧文獻裡適用於傳統平面電晶體,由差排對通道施加應力的解析解,接著我們 利用商業套裝軟體對於鰭式場效應電晶體將源汲極換成矽鍺施加應力作一個尺 寸最佳化,之後我們還比較了一種將源汲極包住後對通道施加應力的方法,最後 我們發現將源汲極包住的方法不只少了一道蝕刻的製程,在尺寸最佳化後它對通 道造成的應力也會大於將源汲極直接換成矽鍺的方法。 | zh_TW |
dc.description.abstract | The numbers of transistor in the circuit and performance may be double every eighteen months. To follow Moore’s law, we scaled down the transistor in the past,but the lithography technology beyond 22nm node may suffer from bottleneck. There are some technologies to solve this problem, one is three dimension structure likes FinFET, and another is three dimension package likes TSVs.
The via may be filled with metal to connect the signal. Because of the large difference of coefficient of thermal expansion between metal and semiconductor, it will lead to strain field as the process temperature is cooling down to room temperature. The strain may change the uniformity or deform the device. In this thesis, we will calculate the strain field induced by TSVs and check the effect to surrounding device. At first, we use two dimensions model to define the keep-out zone and we find the circular pattern can put more transistors because it will decrease the keep-out zone. To compare with the real situation, we derive the analytic solution in three dimensions by the Kane-Mindlin theory. Our model is fit for the middle plane of wafer and the device will often locate in the surface of wafer, so we need to revise it by correction factor. We find the result is similar between numeric solution and analytic solution. Besides, we use the superposition theory to fit the strain field of multiple TSVs, we get the similar result by corrections. At last,we further compare isotropic material of analytic solution with orthotropic material of numeric solution. We can still get the similar result by corrections. The strain technology used in the 90 nm node can still be well suited to the three dimensions transistor. The other part of this thesis will introduce the strain analysis of FinFET stressor. Firstly, we study the strain analytic solution of edge dislocation used in the planar structure which enhances the device performance. Secondly, we optimize the size of replaced S/D SiGe stressor by commercial tool. Afterward we simulate the wrapped stressor and find the wrapped stressor with two advantages. One is the etching process is less and the other is the strain field in the channel is higher than replaced stressor as the size optimization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:10:24Z (GMT). No. of bitstreams: 1 ntu-101-R99941074-1.pdf: 3181067 bytes, checksum: 1f4b5ce203f51b143f6c951268f07659 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Chapter 1 Introduction
1.1 Motivation ................................................................................................1 1.2 Thesis organization ..................................................................................2 1.3 References ................................................................................................4 Chapter 2 Modeling of 2D through silicon via 2.1 Introduction ................................................................................................ 2.1.1 The development of 3DICs ..............................................................6 2.1.2 3DIC processes ................................................................................7 2.2 The 2D model of the strain in silicon......................................................... 2.2.1 Hooke’s law....................................................................................10 2.2.2 The equilibrium equation for displacement ...................................12 2.2.3 Strain induced by vias ....................................................................13 2.2.4 Analytic solution of strain induced by TSV ...................................15 2.2.5 Two TSVs modeling.......................................................................19 2.3 The arrangement of TSVs ......................................................................23 2.4 Summary ................................................................................................27 2.5 References ..............................................................................................28 Chapter 3 Modeling of 3D through silicon via 3.1 Introduction ............................................................................................30 3.2 Modeling of 3D TSVs ................................................................................ 3.2.1 Kane-Mindlin theory ......................................................................30 3.2.2 Analytic solution of TSV ...............................................................33 3.3 Simulation and Calculation ........................................................................ 3.3.1 Simulation tool ...............................................................................37 3.3.2 Isotropic material ...........................................................................37 3.3.3 Orthotropic material .......................................................................41 3.4 Summary ................................................................................................45 3.5 References ..............................................................................................46 vi Chapter 4 Strain analysis of FinFET stressor 4.1 Introduction ............................................................................................47 4.2 Strain technology ...................................................................................48 4.3 Process of dislocation ............................................................................49 4.4 Analytic solution of dislocation ................................................................. 4.4.1 Burger's vector and edge dislocation ............................................50 4.4.2 Description of edge dislocation model .........................................52 4.5 Optimization of the FinFET S/D stressor ..............................................56 4.6 The FEM result .......................................................................................... 4.6.1 S/D optimization ...........................................................................62 4.6.2 Replaced and wrapped stressor .....................................................65 4.7 Summary ................................................................................................69 4.8 References ..............................................................................................70 Chapter 5 Summary and Future Work 5.1 Summary ................................................................................................74 5.2 Future Work ...........................................................................................75 | |
dc.language.iso | en | |
dc.title | 矽穿孔技術與鰭式場效應電晶體應力源之應力分析 | zh_TW |
dc.title | Strain Analysis of Through Silicon Vias (TSVs) and FinFET Stressors | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張書通(Shu-Tong Chang),羅廣禮(Guang-Li Luo),劉俊秀(J. X. Liu) | |
dc.subject.keyword | 三維積體電路,矽穿孔技術,應變,應力,鰭式場效應電晶體,應力源, | zh_TW |
dc.subject.keyword | 3DIC,TSVs,strain,stress,FinFET,stressor, | en |
dc.relation.page | 75 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-03 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。