請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖振鐸 | |
| dc.contributor.author | Mei-Yu Lai | en |
| dc.contributor.author | 賴美佑 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:10:09Z | - |
| dc.date.available | 2014-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | Ashkar, F. and Ouarda, T. B. M. J. (1998). Approximate Confidence Intervals for Quantiles of Gamma and Generalized Gamma Distributions. Journal of Hydrologic Engineering, 3, 43-51.
Chou, Y. and Owen, D. B. (1984). One-Sided Confidence Regions on the Upper and Lower Tail Areas of Normal Distribution. Journal of Quality Technology, 16, 150-158. Gibbons, R. D. (1994). Statistical Methods for Groundwater Monitoring. New York: Wiley. Gibbons, R. D. and Bhaumik, D. K. (2006). Simultaneous Gamma Prediction Limits for Ground Water Monitoring Applications. Ground Water Monitoring and Remediation, 26, 105-116. Ko, G., Burge, H. A., Nardell, E. A. and Thompson, K. M. (2001). Estimation of Tuberculosis Risk and Incidence Under Upper Room Ultraviolet Germicidal Irradiation in a Waiting Room in a Hypothetical Scenario. Risk Analysis, 21, 657-673. Krishnamoorthy, K., Kulkarni, P. M. and Mathew, T. (2001). Multiple Use One-Sided Hypotheses Testing in Univariate Linear Calibration. Journal of Statistical Planning and Inference, 93, 211-223. Krishnamoorthy, K., Mathew, T. and Mukherjee, S. (2008). Normal Based Methods for a Gamma Distribution: Prediction and Tolerance Intervals and Stress-Strength Reliability. Technometrics, 50, 69-78. Krishnamoorthy, K. and Mathew, T. (2009). Statistical Tolerance Regions: Theory, Applications and Computation. New York: Wiley. Kutner, M. H., Nachtsheim, C. J. and Neter J. (2004). Applied Linear Regression Models, 4th edition. McGraw Hill. Lee, H. I. and Liao, C. T. (2012). Estimation for Conformance Proportions in a Normal Variance Components Model. Journal of Quality Technology, 44, 63-79. Liao, C. T., Lin, T. Y. and Iyer, H. (2005). One- and Two-sided Tolerance Intervals for General Balanced Mixed Models and Unbalanced One-Way Random Models. Technometrics, 47, 323-335. Lin, T. Y. (2005). Construction of Tolerance Intervals Using the Concept of Generalized Pivotal Quantity. Ph. D. dissertation, Department of Agronomy, National Taiwan University. Nieuwenhuijsen, M. J., Gordon, S., Harris, J. M., Tee, R. D., Venables, K. M. and Taylor, A. J. N. (1995). Variation in Rat Urinary Aeroallergen Levels Explained by Differences in Site, Task and Exposure Group. Annals of Occupational Hygiene, 29, 819-825. Tsui, K. W. and Weerahandi, S. (1989). Generalized P-values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters. Journal of the American Statistical Association, 84, 602-607. Wald, A. and Wolfowitz, J. (1946). Tolerance Limits for a Normal Distribution. Annals of Mathematical Statistics, 14, 45-55. Wang, C. M. and Lam, C. T. (1996). Confidence Limits for Proportion of Conformance. Journal of Quality Technology, 28, 439-445. Weerahandi, S. (1993). Generalized Confidence Intervals. Journal of the American Statistical Association, 88, 899-905. Wilson, E. B. and Hilferty, M. M. (1931). The Distribution of Chi-Squares. Proceedings of the National Academy of Sciences, 17, 684-688. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64955 | - |
| dc.description.abstract | 良質率一般被用來評估品質好壞的一種統計工具,例如:農業管理及產品評估、環境監測、工業製程上的可靠度分析、產品品質的控管以及製藥效益等等。良質率被定義為我們感興趣的品質特徵落在給定的範圍內之機率。本研究主要針對線性迴歸模式下,來建構雙邊良質率的信賴區間,提出兩個近似的估計方法,這兩種方法的建構過程分別是以廣義樞紐量 (generalized pivotal quantity) 的想法以及 Wang 和 Lam (1996) 所提出的方法來進行,並透過統計模擬來比較其區間的覆蓋率以及區間的期望長度,模擬的結果顯示出以廣義樞紐量為基準的方法擁有良好的覆蓋率以及合理的區間期望長度,可被建議用來解決一般實際的問題,雖然 Wang 和 Lam (1996) 的方法並沒有比較好的表現,但是其計算過程簡單,亦不失為一種可被建議用來解決一般實際問題的方法。本論文將以實際的例子來說明雙邊良質率之區間估計的應用與可行性。 | zh_TW |
| dc.description.abstract | Conformance proportion is commonly used in agriculture management and product evaluation, industrial product quality control or process improvement, environmental monitoring or assessment, pharmaceutical effectiveness evaluation, etc. The bilateral conformance proportion is defined as the probability of a quality characteristic that falls within a specification interval, which can be denoted by , where Y is the quality characteristic of interest and [A,B] is the specification interval. In this study, we focused on constructing confidence limits for the bilateral conformance proportion under the linear regression model. Two construction approaches are proposed. One is based on the concepts of a generalized pivotal quantity, and the other is adopted from the method by Wang and Lam (1996). Detailed simulation studies are conducted to evaluate the performance of these two methods, by comparing their empirical coverage probabilities and expected lengths. The simulation results reveal that the generalized pivotal quantity based method appears to have better coverage probabilities and reasonable expected lengths, which can be suggested in solving generally practical problems. Although the performance of the Wang-Lam method is slightly inferior, it can still be implemented in practical use, due to its computational ease. In addition, some examples are given to illustrate the proposed methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:10:09Z (GMT). No. of bitstreams: 1 ntu-101-R99621203-1.pdf: 3689638 bytes, checksum: 63b9a507820565c9ce3892ed79a6c1e2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 前言 1 第一節 研究動機 3 第二節 文獻回顧 5 第三節 論文架構 7 第二章 研究方法 8 第一節 廣義樞紐量 8 第二節 Wang-Lam (1996) 9 第三章 資料模擬 13 第一節 參數設定與資料產生說明 13 第二節 模擬結果探討 18 第四章 實例應用 22 第五章 結果與討論 28 第一節 結論 28 第二節 未來研究方向 30 參考文獻 33 附錄A 35 附錄B 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 信賴區間 | zh_TW |
| dc.subject | 製程能力指標 | zh_TW |
| dc.subject | 容許區間 | zh_TW |
| dc.subject | 廣義樞紐量 | zh_TW |
| dc.subject | 品質控制 | zh_TW |
| dc.subject | generalized pivotal quantity | en |
| dc.subject | confidence interval | en |
| dc.subject | quality control | en |
| dc.subject | process capability indices | en |
| dc.subject | tolerance interval | en |
| dc.title | 線性迴歸模式之雙邊良質率的區間估計 | zh_TW |
| dc.title | Interval Estimation for the Bilateral Conformance Proportion under the Linear Regression Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭雲明,林彩玉 | |
| dc.subject.keyword | 信賴區間,廣義樞紐量,容許區間,製程能力指標,品質控制, | zh_TW |
| dc.subject.keyword | confidence interval,generalized pivotal quantity,tolerance interval,process capability indices,quality control, | en |
| dc.relation.page | 39 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
