請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64932
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳玉如 | |
dc.contributor.author | Chuan-Ying Lai | en |
dc.contributor.author | 賴傳穎 | zh_TW |
dc.date.accessioned | 2021-06-16T23:08:39Z | - |
dc.date.available | 2017-08-07 | |
dc.date.copyright | 2012-08-07 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | 1. Hunter, T. 1995. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 80:225-236.
2. Rane, S.G., and Reddy, E.P. 2000. Janus kinases: components of multiple signaling pathways. Oncogene 19:5662-5679. 3. Blume-Jensen, P., and Hunter, T. 2001. Oncogenic kinase signalling. Nature 411:355-365. 4. Daub, H. 2010. Kinase inhibitors: Narrowing down the real targets. Nat. Chem. Biol. 6:249-250. 5. Giamas, G., Stebbing, J., Vorgias, C.E., and Knippschild, U. 2007. Protein kinases as targets for cancer treatment. Pharmacogenomics 8:1005-1016. 6. Malumbres, M., and Barbacid, M. 2007. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev. 17:60-65. 7. Traxler, P., Bold, G., Buchdunger, E., Caravatti, G., Furet, P., Manley, P., O'Reilly, T., Wood, J., and Zimmermann, J. 2001. Tyrosine kinase inhibitors: From rational design to clinical trials. Med. Res. Rev. 21:499-512. 8. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. 2006. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 127:635-648. 9. Kyono, Y., Sugiyama, N., Imami, K., Tomita, M., and Ishihama, Y. 2008. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J. Proteome Res. 7:4585-4593. 10. Swaney, D.L., Wenger, C.D., Thomson, J.A., and Coon, J.J. 2009. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 106:995-1000. 11. Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P., and Jorgensen, T.J. 2005. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4:873-886. 12. Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. 2007. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics 6:1103-1109. 13. Tsai, C.F., Wang, Y.T., Chen, Y.R., Lai, C.Y., Lin, P.Y., Pan, K.T., Chen, J.Y., Khoo, K.H., and Chen, Y.J. 2008. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J. Proteome Res. 7:4058-4069. 14. Han, G., Ye, M., and Zou, H. 2008. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst 133:1128-1138. 15. Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B., and Aebersold, R. 2007. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 4:231-237. 16. Mohan, M.S., and Abbott, E.H. 1978. Metal-Complexes of Amino-Acid Phosphate Esters. Inorg. Chem. 17:2203-2207. 17. Corthals, G.L., Aebersold, R., and Goodlett, D.R. 2005. Identification of Phosphorylation Sites Using Microimmobilized Metal Affinity Chromatography. In Methods in Enzymology. A.L. Burlingame, editor: Academic Press. 66-81. 18. Ficarro, S.B., Adelmant, G., Tomar, M.N., Zhang, Y., Cheng, V.J., and Marto, J.A. 2009. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem. 81:4566-4575. 19. Zhou, H., Ye, M., Dong, J., Han, G., Jiang, X., Wu, R., and Zou, H. 2008. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res. 7:3957-3967. 20. Feng, S., Ye, M., Zhou, H., Jiang, X., Zou, H., and Gong, B. 2007. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics 6:1656-1665. 21. Zhou, H., Low, T.Y., Hennrich, M.L., van der Toorn, H., Schwend, T., Zou, H., Mohammed, S., and Heck, A.J. 2011. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol. Cell. Proteomics 10:M110 006452. 22. Chen, J.Q., and Russo, J. 2009. ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta 1796:162-175. 23. Edwards, D.P. 2005. Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol 67:335-376. 24. Shou, J., Massarweh, S., Osborne, C.K., Wakeling, A.E., Ali, S., Weiss, H., and Schiff, R. 2004. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926-935. 25. Jordan, V.C. 2007. New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids 72:829-842. 26. Brauch, H., Murdter, T.E., Eichelbaum, M., and Schwab, M. 2009. Pharmacogenomics of tamoxifen therapy. Clin Chem 55:1770-1782. 27. Shao, W., and Brown, M. 2004. Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6:39-52. 28. Carmeci, C., Thompson, D.A., Ring, H.Z., Francke, U., and Weigel, R.J. 1997. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45:607-617. 29. Filardo, E.J. 2002. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: A novel signaling pathway with potential significance for breast cancer. Journal of Steroid Biochemistry and Molecular Biology 80:231-238. 30. Filardo, E.J., Graeber, C.T., Quinn, J.A., Resnick, M.B., Giri, D., DeLellis, R.A., Steinhoff, M.M., and Sabo, E. 2006. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin Cancer Res 12:6359-6366. 31. Prossnitz, E.R., Arterburn, J.B., and Sklar, L.A. 2007. GPR30: A G protein-coupled receptor for estrogen. Molecular and Cellular Endocrinology 265-266:138-142. 32. Dalerba, P., Cho, R.W., and Clarke, M.F. 2007. Cancer stem cells: models and concepts. Annu Rev Med 58:267-284. 33. Visvader, J.E., and Lindeman, G.J. 2008. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews Cancer 8:755-768. 34. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100:3983-3988. 35. Phillips, T.M., McBride, W.H., and Pajonk, F. 2006. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute 98:1777-1785. 36. Dave, B., and Chang, J. 2009. Treatment resistance in stem cells and breast cancer. J Mammary Gland Biol Neoplasia 14:79-82. 37. Liu, S., and Wicha, M.S. 2010. Targeting breast cancer stem cells. J Clin Oncol 28:4006-4012. 38. Korkaya, H., Paulson, A., Charafe-Jauffret, E., Ginestier, C., Brown, M., Dutcher, J., Clouthier, S.G., and Wicha, M.S. 2009. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7:e1000121. 39. Zhou, J., Wulfkuhle, J., Zhang, H., Gu, P., Yang, Y., Deng, J., Margolick, J.B., Liotta, L.A., Petricoin, E., 3rd, and Zhang, Y. 2007. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 104:16158-16163. 40. Lee, E.K., Han, G.Y., Park, H.W., Song, Y.J., and Kim, C.W. 2010. Transgelin promotes migration and invasion of cancer stem cells. J Proteome Res 9:5108-5117. 41. Fang, D.D., Kim, Y.J., Lee, C.N., Aggarwal, S., McKinnon, K., Mesmer, D., Norton, J., Birse, C.E., He, T., Ruben, S.M., et al. 2010. Expansion of CD133(+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 102:1265-1275. 42. Nilsson, C.L., Dillon, R., Devakumar, A., Shi, S.D., Greig, M., Rogers, J.C., Krastins, B., Rosenblatt, M., Kilmer, G., Major, M., et al. 2010. Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signaling network: an initial study in GSC11 glioblastoma stem cells. J Proteome Res 9:430-443. 43. Han, C.L., Chien, C.W., Chen, W.C., Chen, Y.R., Wu, C.P., Li, H., and Chen, Y.J. 2008. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell. Proteomics 7:1983-1997. 44. Chang, W.W., Lee, C.H., Lee, P., Lin, J., Hsu, C.W., Hung, J.T., Lin, J.J., Yu, J.C., Shao, L.E., Yu, J., et al. 2008. Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 105:11667-11672. 45. Tsai, C.F., Wang, Y.T., Chen, Y.R., Lai, C.Y., Iin, P.Y., Pan, K.T., Chen, J.Y., Khoo, K.H., and Chen, Y.J. 2008. Immobilized metal affinity chromatography revisited: PH/Acid control toward high selectivity in phosphoproteomics. Journal of Proteome Research 7:4058-4069. 46. Wang, Y.T., Tsai, C.F., Hong, T.C., Tsou, C.C., Lin, P.Y., Pan, S.H., Hong, T.M., Yang, P.C., Sung, T.Y., Hsu, W.L., et al. 2010. An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9:5582-5597. 47. Tsou, C.C., Tsai, C.F., Tsui, Y.H., Sudhir, P.R., Wang, Y.T., Chen, Y.J., Chen, J.Y., Sung, T.Y., and Hsu, W.L. 2010. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 9:131-144. 48. Zeeberg, B.R., Feng, W., Wang, G., Wang, M.D., Fojo, A.T., Sunshine, M., Narasimhan, S., Kane, D.W., Reinhold, W.C., Lababidi, S., et al. 2003. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28. 49. Ekins, S., Nikolsky, Y., Bugrim, A., Kirillov, E., and Nikolskaya, T. 2007. Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319-350. 50. Lin, R.J., Lin, Y.C., and Yu, A.L. 2010. miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog 49:719-727. 51. Wei, L., Liu, T.T., Wang, H.H., Hong, H.M., Yu, A.L., Feng, H.P., and Chang, W.W. 2011. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res 13:R101. 52. Ashman, K., and Villar, E.L. 2009. Phosphoproteomics and cancer research. Clin. Transl. Oncol. 11:356-362. 53. Kokubu, M., Ishihama, Y., Sato, T., Nagasu, T., and Oda, Y. 2005. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem. 77:5144-5154. 54. Ye, J., Zhang, X., Young, C., Zhao, X., Hao, Q., Cheng, L., and Jensen, O.N. 2010. Optimized IMAC−IMAC Protocol for Phosphopeptide Recovery from Complex Biological Samples. J. Proteome Res. 9:3561-3573. 55. Zhai, B., Villén, J., Beausoleil, S.A., Mintseris, J., and Gygi, S.P. 2008. Phosphoproteome Analysis of Drosophila melanogaster Embryos. J. Proteome Res. 7:1675-1682. 56. Mant, C.T., Burke, T.W.L., Black, J.A., and Hodges, R.S. 1988. Effect of peptide chain length on peptide retention behaviour in reversed-phase chromatogrphy. J. Chromatogr. 458:193-205. 57. Harrar, N.J., and Germann, F.E.E. 1931. A study of organic acid iron solutions. I. concentrations and colors. J. Phys. Chem. 35:1666-1673. 58. Wu, H.T., Hsu, C.C., Tsai, C.F., Lin, P.C., Lin, C.C., and Chen, Y.J. 2011. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Proteomics 11:2639-2653. 59. Kyte, J., and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105-132. 60. Yu, B., Sun, X., Shen, H.Y., Gao, F., Fan, Y.M., and Sun, Z.J. 2010. Expression of the apoptosis-related genes BCL-2 and BAD in human breast carcinoma and their associated relationship with chemosensitivity. J Exp Clin Cancer Res 29:107. 61. Kelley, L.C., Hayes, K.E., Ammer, A.G., Martin, K.H., and Weed, S.A. 2010. Cortactin phosphorylated by ERK1/2 localizes to sites of dynamic actin regulation and is required for carcinoma lamellipodia persistence. PLoS One 5:e13847. 62. Garcia-Castillo, J., Pedersen, K., Angelini, P.D., Bech-Serra, J.J., Colome, N., Cunningham, M.P., Parra-Palau, J.L., Canals, F., Baselga, J., and Arribas, J. 2009. HER2 carboxyl-terminal fragments regulate cell migration and cortactin phosphorylation. J Biol Chem 284:25302-25313. 63. Peck, D., and Isacke, C.M. 1998. Hyaluronan-dependent cell migration can be blocked by a CD44 cytoplasmic domain peptide containing a phosphoserine at position 325. J Cell Sci 111 ( Pt 11):1595-1601. 64. Desai, B., Ma, T., Zhu, J., and Chellaiah, M.A. 2009. Characterization of the expression of variant and standard CD44 in prostate cancer cells: identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. J Cell Biochem 108:272-284. 65. Edwards, A.S., and Scott, J.D. 2000. A-kinase anchoring proteins: Protein kinase A and beyond. Current Opinion in Cell Biology 12:217-221. 66. Taylor, S.S., Kim, C., Cheng, C.Y., Brown, S.H., Wu, J., and Kannan, N. 2008. Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16-26. 67. Cheadle, C., Nesterova, M., Watkins, T., Barnes, K.C., Hall, J.C., Rosen, A., Becker, K.G., and Cho-Chung, Y.S. 2008. Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells. BMC Med Genomics 1:43. 68. Di Benedetto, G., Zoccarato, A., Lissandron, V., Terrin, A., Li, X., Houslay, M.D., Baillie, G.S., and Zaccolo, M. 2008. Protein kinase A type i and type II define distinct intracellular signaling compartments. Circulation Research 103:836-844. 69. Yu, H., Pardoll, D., and Jove, R. 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798-809. 70. Filardo, E.J., Quinn, J.A., Bland, K.I., and Frackelton, A.R., Jr. 2000. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649-1660. 71. Prossnitz, E.R., Arterburn, J.B., Smith, H.O., Oprea, T.I., Sklar, L.A., and Hathaway, H.J. 2008. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 70:165-190. 72. Sanden, C., Broselid, S., Cornmark, L., Andersson, K., Daszkiewicz-Nilsson, J., Martensson, U.E., Olde, B., and Leeb-Lundberg, L.M. 2011. G protein-coupled estrogen receptor 1/g protein-coupled receptor 30 localizes in the plasma membrane and traffics intracellularly on cytokeratin intermediate filaments. Mol Pharmacol 79:400-410. 73. Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C.G., Liu, S., et al. 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555-567. 74. Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., Hur, M.H., Diebel, M.E., Monville, F., Dutcher, J., et al. 2009. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302-1313. 75. Lizcano, J.M., Morrice, N., and Cohen, P. 2000. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochemical Journal 349:547-557. 76. Zhou, X.M., Liu, Y., Payne, G., Lutz, R.J., and Chittenden, T. 2000. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem 275:25046-25051. 77. Virdee, K., Parone, P.A., and Tolkovsky, A.M. 2000. Phosphorylation of the pro-apoptotic protein BAD on serine 155, a novel site, contributes to cell survival. Current Biology 10:1151-1154. 78. Tan, Y., Demeter, M.R., Ruan, H., and Comb, M.J. 2000. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. Journal of Biological Chemistry 275:25865-25869. 79. Olde, B., and Leeb-Lundberg, L.M.F. 2009. GPR30/GPER1: searching for a role in estrogen physiology. Trends in Endocrinology and Metabolism 20:409-416. 80. Filardo, E.J., Quinn, J.A., Raymond Frackelton Jr, A., and Bland, K.I. 2002. Estrogen action via the G protein-coupled receptor, GPR30: Stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Molecular Endocrinology 16:70-84. 81. Ignatov, A., Ignatov, T., Roessner, A., Costa, S.D., and Kalinski, T. 2010. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat 123:87-96. 82. Kisanga, E.R., Gjerde, J., Guerrieri-Gonzaga, A., Pigatto, F., Pesci-Feltri, A., Robertson, C., Serrano, D., Pelosi, G., Decensi, A., and Lien, E.A. 2004. Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin Cancer Res 10:2336-2343. 83. Lappano, R., Rosano, C., De Marco, P., De Francesco, E.M., Pezzi, V., and Maggiolini, M. 2010. Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol 320:162-170. 84. Wilkes, D., Charitakis, K., and Basson, C.T. 2006. Inherited disposition to cardiac myxoma development. Nat Rev Cancer 6:157-165. 85. Yee, S.C., Kim, M.K., Tan, L., Srivastava, R., Agrawal, S., and Cho-Chung, Y.S. 2002. Protein kinase a RIα antisense inhibition of PC3m prostate cancer cell growth: Bcl-2 hyperphosphorylation, Bax up-regulation, and Bad-hypophosphorylation. Clinical Cancer Research 8:607-614. 86. Danial, N.N. 2008. BAD: undertaker by night, candyman by day. Oncogene 27 Suppl 1:S53-70. 87. Lappano, R., and Maggiolini, M. 2011. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47-60. 88. Vivacqua, A., Bonofiglio, D., Recchia, A.G., Musti, A.M., Picard, D., Ando, S., and Maggiolini, M. 2006. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 20:631-646. 89. Vivacqua, A., Bonofiglio, D., Albanito, L., Madeo, A., Rago, V., Carpino, A., Musti, A.M., Picard, D., Ando, S., and Maggiolini, M. 2006. 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 70:1414-1423. 90. Fisher, B., Costantino, J.P., Wickerham, D.L., Cecchini, R.S., Cronin, W.M., Robidoux, A., Bevers, T.B., Kavanah, M.T., Atkins, J.N., Margolese, R.G., et al. 2005. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97:1652-1662. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64932 | - |
dc.description.abstract | 蛋白質磷酸化在真核細胞中是一個重要的調控機制,分析其動態變化可幫助了解磷酸化在生物體中的功能。儘管近年來將質譜技術應用於磷酸化蛋白質體的研究已有長足的進步,有效率的純化磷酸化胜肽仍是全面性分析磷酸化蛋白質體研究時不可或缺的步驟。基於磷酸根對三價鐵離子(Fe3+)以及4價鈦離子(Ti4+)具有不同程度的親和力和空間配位,我們在論文的第一部分新開發一互補式金屬離子親和層析法(IMAC)來增加磷酸化胜肽的鑑定數量。結果顯示藉由選擇有機酸結構以及濃度並添加有機溶劑能夠有效抑制非磷酸化胜肽之吸附,而且純化專一性可高達80%以上。透過分析最佳化的Fe3+-IMAC和Ti4+-IMAC方法從Raji B細胞樣品中所純化到的不同磷酸化胜肽,我們最大的發現是兩種方法所純化到的2905段磷酸化胜肽種類具有非常低的重複性(10%)。由於Fe3+-IMAC和Ti4+IMAC方法對偏酸性和偏鹼性磷酸化胜肽的親和力不同,並具有互補性的純化效果,可有效地的提高磷酸化蛋白的鑑定數量。此外這方法具有高重複性和低樣品損失率,我們認為此方法結合定量方法可應用於定量磷酸化蛋白質體的研究。
在開發出高效率的磷酸化胜肽純化方法後,我們想進一步在生物系統中驗證其應用性。因此我們利用此新開發的磷酸化胜肽純化方法結合無標記定量分析技術來研究醫學上的重要課題。人類乳癌幹細胞(BCSC)為一群具有新生腫瘤能力,起始細胞分化,並且對於放射治療和化療相對耐受性較高的細胞。在論文的第二部分,為從磷酸化蛋白質體的角度了解乳癌幹細胞獨特之性質,我們比較從同一乳癌組織(雌激素受體為陰性反應)中分出的乳癌幹細胞和非幹細胞之其他細胞的磷酸化蛋白質體差異。經由磷酸化蛋白質體之結果分析,我們得以描繪出可能參與細胞更新和能維護幹細胞特性的訊息傳遞路線,包括Notch,CDK/ Erk和JAK-STAT等訊息傳遞路線。透過生化及細胞實驗的驗證,我們證明了G protein-coupled estrogen receptor 1(GPER)於雌激素受體為陰性的乳癌患者中,在其過度表現或受其配體刺激時,會透過PKA造成BAD於Ser118位點上的磷酸化。透過使用RNAi來阻斷GPER的功能或進行BAD上Ser118位點突變,也同樣能夠降低乳癌幹細胞活性和乳腺球細胞的生成能力。這意味著GPER和其下游的PKA訊息傳遞路線為主要維持乳癌幹細胞特質的主角,而我們的研究結果顯示GPER具有高潛力成為新一代治療乳癌幹細胞之目標蛋白。 | zh_TW |
dc.description.abstract | Protein phosphorylation is an important regulatory mechanism in eukaryotic cells, and the study of its dynamic change has become a major contributor to understand its functionalities. Despite advancement in mass spectrometry-based phosphoproteomics, effective phosphopeptide enrichment is a perquisite towards comprehensive mapping of the site-specific change of phosphorylation in the spatial and temporal domain. Based on the different binding affinity and coordination geometry of Fe3+ and Ti4+ ion with phosphate group, in the first part of the thesis, we developed a complementary immobilized metal ion affinity chromatography (IMAC) to increase the identification coverage of phosphoproteome. Based on phosphopeptides from standard phosphoproteins and Raji B cell, optimal enrichment specificity (>80%) was achieved by the selection of acid structure/concentration and organic solvent to compete with non-phosphopeptides. The remarkable discovery is that optimal Fe3+-IMAC and Ti4+-IMAC methods have low overlapping percentage (10%) among the 2905 enriched phosphopeptides from Raji B cell. The reported Fe3+-IMAC and Ti4+-IMAC can complementarily enrich acidic and basic phosphopeptides to effectively increase the identification coverage of the heterogeneous phosphoproteome. Given the reproducibility and low sample loss, the combination of our enrichment strategy with quantitative technique could be feasible for quantitative phosphoproteomics.
Following the development of our enrichment strategy for phosphopeptides, we would like to further validate its capability by applying our enrichment method in combination with the label-free quantitation technique to study a medically relevant topic. Human breast cancer stem cells (BCSC) have the ability to initiate neoplastic growth with differentiation and are relatively resistant to radiation and chemotherapy. To identify novel targets for breast cancer stem cells, in the second part of the thesis, we quantitatively compared the phosphoproteomes between BCSC and non-BCSC derived from a xenograft of estrogen receptor negative human breast cancer. The phosphoproteomic mapping revealed signaling proteins involved in the Notch, CDK/Erk and JAK-STAT pathways, which may potentially orchestrate the self-renewal and stemness of BCSC. We demonstrated the overexpression of G-protein coupled estrogen receptor 1 (GPER) in ER-negative patients and its activation, stimulated by its ligands, induced protein kinase A (PKA)-mediated Ser118 phosphorylation of Bcl-2-associated death promoter (BAD). GPER silencing via RNAi or the dominant negative mutation of BAD Ser118 led to reduced survival and mammosphere forming capacity of BCSC, which implied GPER and its downstream PKA pathway as central to maintain BCSC characteristics. These in vivo findings provide new insights into GPER as a potential therapeutic target for BCSCs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:08:39Z (GMT). No. of bitstreams: 1 ntu-101-D92B46016-1.pdf: 31490360 bytes, checksum: 5ae7c75ba123d2b0e483dc9ae692c42c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT V CONTENTS VIII LIST OF FIGURES XII LIST OF TABLES XV ABBREVIATIONS XVI CHAPTER 1: INTRODUCTION 1 1.1 MASS SPECTROMETRY-BASED PHOSPHOPROTEOMIC ANALYSIS 1 1.2 CHALLENGE IN IMPROVING IMAC PROTOCOL 3 1.3 BREAST CANCER STEM CELL OVERVIEW 5 1.4 SCIENTIFIC RATIONALE AND SPECIFIC AIMS 9 CHAPTER 2: MATERIALS AND METHODS 11 2.1 MATERIALS 11 2.2 PREPARATION OF STANDARD PROTEIN MIXTURE 11 2.3 CELL CULTURE AND REAGENTS. 12 2.4 GEL-ASSISTED DIGESTION 12 2.5 IMAC PURIFICATION PROCEDURE 13 2.6 TITANIUM DIOXIDE PURIFICATION PROCEDURE 14 2.7 MALDI-TOF MS ANALYSIS 15 2.8 LC-MS/MS ANALYSIS 15 2.9 DATABASE SEARCH 16 2.10 ISOLATION AND MAINTENANCE OF PRIMARY HUMAN BREAST CANCER XENOGRAFT 17 2.11 FLUORESCENCE ACTIVATED CELL SORTING (FACS) 17 2.12 GEL-ASSISTED DIGESTION AND IMAC-FACILITATED PHOSPHOPEPTIDE PURIFICATION FOR BCSC 18 2.13 LC-MS/MS ANALYSIS FOR BCSC PHOSPHOPROTEOMICS 19 2.14 DATABASE SEARCH AND QUANTITATIVE ANALYSIS FOR BCSC PHOSPHOPROTEOMICS 20 2.15 BIOINFORMATICS ANALYSIS FOR BCSC PHOSPHOPROTEOMICS 22 2.16 WESTERN BLOT ANALYSIS 22 2.17 CONSTRUCTION OF BAD SER118→ALA INDUCIBLE MUTANT 23 2.18 KNOCKDOWN OF GPER EXPRESSION WITH SIRNA OLIGO 24 2.19 RT-QPCR OF GPER MRNA 24 2.20 CELL PROLIFERATION ASSAY 25 2.21 MAMMOSPHERE FORMATION ASSAY 25 CHAPTER 3: DEVELOPMENT OF A COMPLEMENTARY FE3+- AND TI4+-IMMOBILIZED METAL ION AFFINITY CHROMATOGRAPHY FOR PURIFICATION OF ACIDIC AND BASIC PHOSPHOPEPTIDES 27 3.1 EVALUATING ENRICHMENT SPECIFICITY OF PHOSPHOPEPTIDE WITH FE3+- AND TI4+- IMAC 27 3.2 COMPARISON ON THE PHOSPHOPEPTIDES ENRICHED BY TI4+-IMAC AND FE3+-IMAC 30 3.3 COMPLEMENTARY IDENTIFICATION OF THE PHOSPHOPROTOEME OF RAJI CELLS BY FE3+-IMAC AND TI4+-IMAC 31 3.4 DISCUSSION 34 CHAPTER 4: GLOBAL PHOSPHOPROTEOMIC ANALYSIS OF SIGNALING CASCADES IN BREAST CANCER STEM CELL 41 4.1 DIFFERENCE IN KEY CELLULAR MACHINERY BETWEEN BCSC AND NON-BCSC REVEALED BY PHOSPHOPROTEOMIC ANALYSIS 41 4.2 SELECTED VALIDATION OF DIFFERENTIALLY PHOSPHORYLATED PROTEINS IN BCSC OF XENOGRAFTS DERIVED FROM PATIENTS’ TUMORS 44 4.3 OVEREXPRESSION OF GPER IN BCSC IN COMPARISON TO NON-BCSC 46 4.4 GPER KNOCKDOWN REDUCED VIABILITY AND STEMNESS OF BCSC 47 4.5 GPER SIGNALING WAS ESSENTIAL TO THE MAINTENANCE OF BCSC CHARACTERISTICS 49 4.6 DISCUSSION 52 CHAPTER 5: CONCLUSION 56 REFERENCES 59 SUPPLEMENTARY TABLE 108 | |
dc.language.iso | en | |
dc.title | 以磷酸化蛋白質體學技術探討乳癌幹細胞之特性 | zh_TW |
dc.title | Phosphoproteomic Analysis of Signaling Cascades in Breast Cancer Stem Cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 陳鈴津 | |
dc.contributor.oralexamcommittee | 李明亭,蕭宏昇,沈家寧 | |
dc.subject.keyword | 質譜,磷酸化,蛋白質體學,乳癌,癌幹細胞,訊息傳遞, | zh_TW |
dc.subject.keyword | Mass spectrometry,Phosphorylation,Proteomics,Breast cancer,Cancer stem cell,Signal transduction, | en |
dc.relation.page | 133 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-06 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 30.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。