請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64931完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 湯佩芳 | |
| dc.contributor.author | Yi-Cheng Lin | en |
| dc.contributor.author | 林宜錚 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:08:37Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-04 | |
| dc.identifier.citation | Abe M, Hanakawa T. (2009) Functional coupling underlying motor and cognitive functions of the dorsal premotor cortex. Behav Brain Res, 198:13-23.
Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni G B, Filippi M. (2012) Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiology Aging, 33:1564-78. Andersen R A, Buneo C A. (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci, 25:189-220. Asari T, Konishi S, Jimura K, Miyashita Y. (2005) Multiple components of lateral posterior parietal activation associated with cognitive set shifting. NeuroImage, 26:694-702. Ball G, Stokes P R, Rhodes R A, Bose S K, Rezek I, Wink A M, Lord L D, Mehta M A, Grasby P M, Turkheimer F E. (2011) Executive functions and prefrontal cortex: a matter of persistence? Front Syst Neurosci, 5:3. Barcelo F. (1999) Electrophysiological evidence of two different types of error in the Wisconsin Card Sorting Test. Neuroreport, 10:1299-303. Basser P J. (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed, 8:333-44. Basser P J, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med, 44:625-32. Beckmann M, Johansen-Berg H, Rushworth M F. (2009) Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci, 29:1175-90. Botvinick M, Nystrom L E, Fissell K, Carter C S, Cohen J D. (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402:179-81. Buchsbaum B R, Greer S, Chang W L, Berman K F. (2005) Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum Brain Mapp, 25:35-45. Buckner R L. (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44:195-208. Busse A, Hensel A, Guhne U, Angermeyer M C, Riedel-Heller S G. (2006) Mild cognitive impairment: long-term course of four clinical subtypes. Neurology, 67:2176-85. Catafau A M, Parellada E, Lomena F, Bernardo M, Setoain J, Catarineu S, Pavia J, Herranz R. (1998) Role of the cingulate gyrus during the Wisconsin Card Sorting Test: a single photon emission computed tomography study in normal volunteers. Psychiatry Res, 83:67-74. Catheline G, Periot O, Amirault M, Braun M, Dartigues J F, Auriacombe S, Allard M. (2010) Distinctive alterations of the cingulum bundle during aging and Alzheimer's disease. Neurobiology Aging, 31:1582-92. Cavanna, A.E., Trimble, M.R. (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129:564-83. Chen T F, Chen Y F, Cheng T W, Hua M S, Liu H M, Chiu M J. (2009a) Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer's disease. Hum Brain Mapp, 30:3826-36. Chen T F, Lin C C, Chen Y F, Liu H M, Hua M S, Huang Y C, Chiu M J. (2009b) Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res, 173:15-21. Davatzikos C, Resnick S M. (2002) Degenerative age changes in white matter connectivity visualized in vivo using magnetic resonance imaging. Cereb Cortex, 12:767-71. Eisenberg D P, Berman K F. (2010) Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology, 35:258-77. Filippi M, Agosta F. (2011) Structural and functional network connectivity breakdown in Alzheimer's disease studied with magnetic resonance imaging techniques. J Alzheimers Dis, 24:455-74. Folstein M F, Folstein S E, McHugh P R. (1975) 'Mini-mental state' : A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12:189-198. Funahashi S. (2001) Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci Res, 39:147-65. Garavan H, Ross T J, Murphy K, Roche R A, Stein E A. (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage, 17:1820-9. Grieve S M, Williams L M, Paul R H, Clark C R, Gordon E. (2007) Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. Am J neuroradiol, 28:226-35. Hebert L E, Scherr P A, Bienias J L, Bennett D A, Evans D A. (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol, 60:1119-22. Hendrie H C. (1998) Epidemiology of dementia and Alzheimer's disease. Am J Geriatr Psychiatry, 6:S3-18. Hua M S, Chang B S, Lin K N, Yang J M, Lu S R, Chen S Y. (2005) Wechsler Memory Scale (Chinese) [Manual]. Taipei. Chinese Behavioral Science Corp. Hubbard P L, Parker G J M. (2009) Validation of tractography. Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy: Elsevier/Academic Press. Jack C R, Jr., Albert M S, Knopman D S, McKhann G M, Sperling R A, Carrillo M C, Thies B, Phelps C H. (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7:257-62. Jezzard P, Clare S. (1999) Sources of distortion in functional MRI data. Hum Brain Mapp, 8:80-5. Johansen-Berg H, Behrens T E J. (2009) Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy. Elsevier/Academic Press. Kalaria R N, Maestre G E, Arizaga R, Friedland R P, Galasko D, Hall K, Luchsinger J A, Ogunniyi A, Perry E K, Potocnik F, Prince M, Stewart R, Wimo A, Zhang Z X, Antuono P. (2008) Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol, 7:812-26. Kamagata K, Motoi Y, Abe O, Shimoji K, Hori M, Nakanishi A, Sano T, Kuwatsuru R, Aoki S, Hattori N. (2012) White Matter Alteration of the Cingulum in Parkinson Disease with and without Dementia: Evaluation by Diffusion Tensor Tract-Specific Analysis. Am JNeuroradiol.DOI:10.3174/ajnr.A2860 Kantarci K, Senjem M L, Avula R, Zhang B, Samikoglu A R, Weigand S D, Przybelski S A, Edmonson H A, Vemuri P, Knopman D S, Boeve B F, Ivnik R J, Smith G E, Petersen R C, Jack C R, Jr. (2011) Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology, 77:26-34. Karantzoulis S, Galvin J E. (2011) Distinguishing Alzheimer's disease from other major forms of dementia. Expert Rev Neurother, 11:1579-91. Karas G, Scheltens P, Rombouts S, van Schijndel R, Klein M, Jones B, van der Flier W, Vrenken H, Barkhof F. (2007) Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology, 49:967-76. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. (2000) Age-specific incidence rates of Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology, 54:2072-7. Kim C, Cilles S E, Johnson N F, Gold B T. (2012) Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp, 33:130-42. Kiuchi K, Morikawa M, Taoka T, Nagashima T, Yamauchi T, Makinodan M, Norimoto K, Hashimoto K, Kosaka J, Inoue Y, Inoue M, Kichikawa K, Kishimoto T. (2009) Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study. Brain Res, 1287:184-91. Knopman D S, Boeve B F, Petersen R C. (2003) Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc, 78:1290-308. Kortte K B, Horner M D, Windham W K. (2002) The trail making test, part B: cognitive flexibility or ability to maintain set? Appl Neuropsychol, 9:106-9. Lie C H, Specht K, Marshall J C, Fink G R. (2006) Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. NeuroImage, 30:1038-49. Liston C, Matalon S, Hare T A, Davidson M C, Casey B J. (2006) Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron, 50:643-53. Lo Y C, Soong W T, Gau S S, Wu Y Y, Lai M C, Yeh F C, Chiang W Y, Kuo L W, Jaw F S, Tseng W Y. (2011) The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res, 192:60-6. Lopez O L, Kuller L H, Becker J T, Dulberg C, Sweet R A, Gach H M, Dekosky S T. (2007) Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Arch Neurol, 64:416-20. Marshall G A, Rentz D M, Frey M T, Locascio J J, Johnson K A, Sperling R A. (2011) Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement, 7:300-8. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan E M. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34:939-44. McKhann G M, Knopman D S, Chertkow H, Hyman B T, Jack C R, Jr., Kawas C H, Klunk W E, Koroshetz W J, Manly J J, Mayeux R, Mohs R C, Morris J C, Rossor M N, Scheltens P, Carrillo M C, Thies B, Weintraub S, Phelps C H. (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7:263-9. Mielke M M, Kozauer N A, Chan K C, George M, Toroney J, Zerrate M, Bandeen-Roche K, Wang M C, Vanzijl P, Pekar J J, Mori S, Lyketsos C G, Albert M. (2009) Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. NeuroImage, 46:47-55. Miller E K, Cohen J D. (2001) An integrative theory of prefrontal cortex function. Ann Rev Neurosci, 24:167-202. Moll J, de Oliveira-Souza R, Moll F T, Bramati I E, Andreiuolo P A. (2002) The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq Neuropsiquiatria, 60:900-5. Monchi O, Petrides M, Petre V, Worsley K, Dagher A. (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging.J Neurosci, 21:7733-41. Mori S, Wakana S, Van Zijl P C M. (2004) MRI atlas of human white matter. Amsterdam, The Netherlands ; San Diego, CA. Elsevier. p. p. Nakata Y, Sato N, Abe O, Shikakura S, Arima K, Furuta N, Uno M, Hirai S, Masutani Y, Ohtomo K, Aoki S. (2008) Diffusion abnormality in posterior cingulate fiber tracts in Alzheimer's disease: tract-specific analysis. Radiat Med, 26:466-73. Nyhus E, Barcelo F. (2009) The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: a critical update. Brain Cogn, 71:437-51. Palomero-Gallagher N, Vogt B A, Schleicher A, Mayberg H S, Zilles K. (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp, 30:2336-55. Pievani M, de Haan W, Wu T, Seeley W W, Frisoni G B. (2011) Functional network disruption in the degenerative dementias. Lancet Neurol, 10:829-43. Polgar P, Rethelyi J M, Balint S, Komlosi S, Czobor P, Bitter I. (2010) Executive function in deficit schizophrenia: what do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophr Res, 122:85-93. Portney L G, Watkins M P. (2009) Foundations of clinical research: Applications to practice. Upper Saddle River: Prentice-Hall, Inc. Provost J S, Petrides M, Simard F, Monchi O. (2011) Investigating the long-lasting residual effect of a set shift on frontostriatal activity. Cereb Cortex. Royall D R, Lauterbach E C, Cummings J L, Reeve A, Rummans T A, Kaufer D I, LaFrance W C, Jr., Coffey C E. (2002) Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci, 14:377-405. Schmahmann J D, Pandya D N. (2006) Cingulum Bundle. Fiber Pathways of the Brain: Oxford University Press, 2009. p 427-440. Schmahmann J D, Pandya D N, Wang R, Dai G, D'Arceuil H E, de Crespigny A J, Wedeen V J. (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130:630-53. Seeley W W, Menon V, Schatzberg A F, Keller J, Glover G H, Kenna H, Reiss A L, Greicius M D. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 27:2349-56. Suchy Y. (2009) Executive functioning: overview, assessment, and research issues for non-neuropsychologists. Ann Behav Med, 37:106-16. Tabert M H, Manly J J, Liu X, Pelton G H, Rosenblum S, Jacobs M, Zamora D, Goodkind M, Bell K, Stern Y, Devanand D P. (2006) Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry, 63:916-24. Taoka T, Kin T, Nakagawa H, Hirano M, Sakamoto M, Wada T, Takayama K, Wuttikul C, Iwasaki S, Ueno S, Kichikawa K. (2007) Diffusivity and diffusion anisotropy of cerebellar peduncles in cases of spinocerebellar degenerative disease. NeuroImage, 37:387-93. Torta D M, Cauda F. (2011) Different functions in the cingulate cortex, a meta-analytic connectivity modeling study. NeuroImage, 56:2157-72. Tosun D, Schuff N, Mathis C A, Jagust W, Weiner M W. (2011) Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment. Brain, 134:1077-88. Vann S D, Aggleton J P, Maguire E A. (2009) What does the retrosplenial cortex do? Nat Rev Neurosci, 10:792-802. Vogel J J, Bowers C A, Vogel D S. (2003) Cerebral lateralization of spatial abilities: a meta-analysis. Brain Cogn, 52:197-204. Vogt B A. (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci, 6:533-44. Vogt B A, Hof P R, Vogt L J. (2011) Cingulate Gyrus. The Human Nervous System: Elsevier Science. p 915-949. Wedeen V J, Wang R P, Schmahmann J D, Benner T, Tseng W Y, Dai G, Pandya D N, Hagmann P, D'Arceuil H, de Crespigny A J. (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage, 41:1267-77. Yogev-Seligmann G, Hausdorff J M, Giladi N. (2008) The role of executive function and attention in gait. Mov Disord, 23:329-42. Zakzanis K K, Mraz R, Graham S J. (2005) An fMRI study of the Trail Making Test. Neuropsychologia, 43:1878-86. Zhang Y, Schuff N, Jahng G H, Bayne W, Mori S, Schad L, Mueller S, Du A T, Kramer J H, Yaffe K, Chui H, Jagust W J, Miller B L, Weiner M W. (2007) Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68:13-9. Zhou S S, Fan J, Lee T M, Wang C Q, Wang K. (2011) Age-related differences in attentional networks of alerting and executive control in young, middle-aged, and older Chinese adults. Brain Cogn, 75:205-10. 高至潔。台灣正常中老年人尼爾森修訂版卡片分類測驗之常模研究。臺灣大學心理學研究所。碩士論文;2009。 國際阿茲海默症協會亞太地區會員國。失智症亞太地區盛行報告。社團法人台灣失智症協會翻譯,2006。 郭曉燕。臺灣正常中老年人彩色路徑描繪測驗之常模研究。臺灣大學心理學研究所。碩士論文;2009。. 陳達夫、邱銘章、湯麗玉、林忠蔚、史宛玉、陳榮基。失智症盛行率調查報告─台灣長期照護機構失智患者之盛行率調查摘要. http://www.tds.org.tw/html/front/bin/ptdetail.phtml?Part=022&Category=121256:台灣失智症協會;2004 劉景寬、戴志遠、林瑞泰、賴秋蓮。台灣失智症的流行病學。應用心理研究 2000;7:157-69。. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64931 | - |
| dc.description.abstract | 背景與目的:執行功能的表現是預測輕度知能障礙患者惡化為阿茲海默症的重要因子之一。扣帶迴神經束則是聯絡執行功能神經網絡主要神經纖維束之一。然而,扣帶迴神經束(cingulum bundle)之結構完整性在輕度知能障礙患者以及輕度阿茲海默症患者中退化的程度,以及扣帶迴神經束結構完整性與此兩種患者執行功能(executive function)表現間的相關性仍未有定論。因此本研究主要目的有二:(一)利用腦部擴散頻譜造影(diffusion spectrum imaging)之影像,探討輕度知能障礙、輕度阿茲海默症患者與與年齡相當之健康成人的扣帶迴神經束結構完整性差異;(二)探討輕度知能障礙與輕度阿茲海默症患者之執行功能與扣帶迴神經束結構完整性間之相關性。
方法: 本研究原本共徵召34位受試者,但其中2位受試者(一位輕度知能障礙患者及一位健康成年人)之腦部影像因品質較差而無法納入分析,因此資料可分析人數總共為32位,包含健康控制組15位(平均年齡71.1±7.1歲),輕度知能障礙患者8位(平均年齡73.7±8.2歲)以及輕度阿茲海默症患者9位(平均年齡74.7±8.2歲)。每位受試者接受腦部磁振造影及臨床神經心理測驗,測驗內容含「彩色路徑描繪測驗A部分與B部分」 (Color Trails Test- Part A and Part B)與尼爾森修訂版卡片分類測驗 (Modified Card Sorting Test)兩個臨床執行功能測驗,及評估整體認知功能之迷你心智量表(Mini-Mental State Examination)。對擴散頻譜造影資料,採特定神經纖維束分析法(tract-specific analysis)與興趣區域分析法(region of interest (ROI) analysis),計算整段、前段、中段及後段扣帶迴神經束之普不等向性擴散分數(generalized fractional anisotropy, GFA),並以這些值代表扣帶迴神經束整段及分段之結構完整性,GFA值越高代表扣帶迴神經束整段及分段之結構越完整。在統計分析方面,本研究以克-瓦二氏單因子等級變異數分析(Kruskal-Wallis one-way analysis of variance by ranks),並以曼惠特尼U檢定(Mann-Whitney U test)作事後檢定,比較三組在神經心理測驗表現與扣帶迴神經束結構完整性上之差異。另以斯皮爾曼等級相關係數(Spearman's rank correlation coefficient)探討兩組患者中,其執行功能表現與扣帶迴神經束結構完整性間之相關性。 結果: 組間比較結果發現:輕度阿茲海默症患者在尼爾森修訂版卡片分類測驗之完成組數(p=0.008)、固著性錯誤(p=0.003)以及彩色路徑描繪測驗A部分(p=0.001)與B部分(p=0.003)的表現顯著低於健康控制組;而輕度知能障礙患者之執行功能表現則介於阿茲海默症患者及健康控制組之間,但與此兩組相較未達顯著差異(p= 0.041~0.964)。而以特定神經纖維束分析法所得之結果顯示,輕度阿茲海默症組之左側整段(p=0.001)以及左側後段(p=0.006)扣帶迴神經束之GFA值顯著低於健康控制組。此外,輕度知能障礙患者與輕度阿茲海默患者完成彩色路徑描繪測驗B部分的時間與以特定神經纖維束分析法所得之左側整段 (rs= -0.628, p= 0.007)及左側後段(rs= -0.613, p= 0.009)扣帶迴神經束之GFA值具有中度負相關,與右側中段之GFA值亦有低度負相關(rs= -0.482, p= 0.05),代表完成彩色路徑描繪測驗B部份所需的時間越久(亦即表現越差)的患者,其左側整段、左側後段及右側中段扣帶迴神經束之GFA值越低,即這些神經束段落之結構完整性越差。此外,尼爾森修訂版卡片分類測驗結果顯示,兩組患者之非固著性錯誤個數與以特定神經纖維束分析法所得之右側中段扣帶迴神經束GFA值有顯著中度負相關(rs= -0.500, p= 0.04),代表非固著性錯誤個數越多(即表現越差)的患者,其右側中段扣帶迴神經束GFA值越低,即此段神經束結構完整性越差。然而,以興趣區域分析法所得之結果則發現:不論是三組間扣帶迴神經束結構完整性的比較,或是扣帶迴神經束結構完整性與執行功能表現間的相關性,皆未達到統計上顯著的差異(p=0.106~0.903)。 結論: 總結而言,本研究發現輕度阿茲海默症患者之執行功能表現以及採特定神經纖維束分析法所得之左側整段及左側後段扣帶迴神經束完整性較健康控制組的為差。此外,以特定神經纖維束分析法所得之結果顯示,輕度知能障礙患者與輕度阿茲海默患者之執行功能表現與其左側整段、左側後段及右側中段之扣帶迴神經束結構完整性有低至中度的相關性。因此,以特定神經纖維束分析法分析扣帶迴結構完整性確實能反應出輕度知能障礙患者與輕度阿茲海默症患者腦部與執行功能退化相關之扣帶迴結構完整性退化現象。 | zh_TW |
| dc.description.abstract | Backgroundand Purposes: Executive function is one of the most important predictors for conversion to Alzheimer’s disease (AD) from mild cognitive impairment (MCI). Cingulum bundle (CB) is one of the main associative fibers connecting the “executive control network” in the brain. However, it remains controversial regarding whether the degree of degeneration of the CB in patients with MCI and patients with AD, and concerning whether there is a correlation between the integrity of CB and the executive function of these patients. Therefore, the two purposes of this study were: (1) to compare the differences in the integrity of CB among patients with MCI, patients with mild AD, and age-matched healthy controls using diffusion spectrum imaging (DSI) of the brain and (2) to investigate the relationship between executive function and the integrity of CB in patients with MCI and patients with mild AD.
Methods: We originally recruited 34 subjects. Due to the poor quality of brain image data of one MCI subject and one healthy subject, we only analyzed data from the remaining 32 subjects, including 15 healthy controls (mean age= 71.1 ± 7.1 years), 8 MCI (mean age= 73.7 ± 8.2 years), and 9 mild AD (mean age= 74.7 ± 8.2 years), were analyzed. All subjects received the DSI MR scan of the brain and clinical neuropsychological tests. The latter included the Color Trails Test- Parts A and B (CTT-A and CTT-B, respectively) and the Nelson Modified Card Sorting Test (MCST) for assessing executive function; and the Mini-Mental State Examination (MMSE) for assessing overall cognitive function. In DSI data analysis, we used tract-specific analysis method and region of interest (ROI) analysis method to calculate the generalized fractional anisotropy (GFA) values of the entire CB and the anterior (aCB), middle (mCB), and posterior (pCB) segments of the CB of each hemisphere to serve as the quantitative measures of the CB integrity for each subject. The higher the GFA values are, the better the integrity of CB is.For statistical analyses, we compared group differences in GFA values and performance on executive function tests using the Kruskal-Wallis analysis of variance by ranks test. The Mann-Whitney U test was used for post-hoc analysis. The relationships between the performance on executive function tests and the GFA values were analyzed by using the Spearman's rank correlation coefficients. Results: Statistical results showed that patients with mild AD performed significantly poorer than the healthy control group on the number of completed set (p=0.008) and number of perseverative errors (p=0.003) of the MCST test, as well as on the CTT-A (p=0.001) and CTT-B (p=0.003). Performance on these executive function tests of the MCI group was better than that of the mild AD group and poorer than that of the healthy control group, but there were no significant group differences (p= 0.041~0.964)。Results of the tract-specific analysis method showed that the GFA values of the entire left CB (p=0.001) and left pCB(p=0.006) significantly smaller in the mild AD group compared to those of the healthy control group (p< 0.017). Results of the correlation analyses for the two patient groups showed that the time to complete the CTT-B was highly correlated with the GFA values of the entire left CB (rs= -0.628, p= 0.007), left pCB(rs= -0.613, p= 0.009), and right mCB(rs= -0.482, p= 0.05) calculated by using the tract-specific analysis method. This finding suggests that patients who performed poorer on CTT-B also had poorer structural integrity of their left entire CB, left pCB, and right mCB. In addition, patients’ number of non-perseverative errors on the MCST was significantly correlated with the GFA value of the right mCB (rs= -0.500, p= 0.04), suggesting that patients who presented a greater number of non-perseverative errors on the MCST also showed poorer integrity of the right mCB. Results of analyses using the GFA values obtained from the ROI method showed no significant group differences in any GFA value and no significant correlations between the GFA values and executive function performance (p=0.106~0.903)。 Conclusion.We concluded thatbased on the structural integrity measures derived from the tract-specific analysis method, patients with mild AD presented poorer structural integrity of the entire left CB and left pCB than the healthy controls. The executive function of patients with mild AD and patients with MCI was significantly correlated with the structural integrity of the entire left CB, left pCB, and right mCB. These findings suggest that the structural integrity of CB analyzed by using the tract-specific method could reveal CB fiber integrity degeneration that is associated with decline in executive function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:08:37Z (GMT). No. of bitstreams: 1 ntu-101-R99428010-1.pdf: 2046380 bytes, checksum: 21431295a7677c51e90b9ed5329de118 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄 I
中文摘要 1 英文摘要 3 第一章、緒論 5 研究背景 5 阿茲海默症與輕度知能障礙 5 執行功能 6 執行功能的神經機制 7 知能障礙患者之扣帶迴神經束結構變化 9 過去研究的限制與本篇研究目的 11 研究問題 12 研究假說 13 第二章、研究方法 15 受試者 15 輕度知能障礙患者與輕度阿茲海默症患者之診斷標準 15 受試者納入與排除條件 15 研究工具 16 臨床神經心理功能評估 16 腦部磁振造影 16 磁振造影資料分析 17 統計分析 20 第三章、結果 22 扣帶迴神經束結構完整性之組間比較 22 扣帶迴神經束結構完整性與執行功能之相關性 23 第四章、討論 24 扣帶迴神經束結構完整性之組間比較 24 扣帶迴神經束結構完整性與執行功能之相關性 26 本研究限制 28 第五章、結論 30 參考文獻 31 附表 39 表一、受試者基本資料與臨床執行功能測試結果 39 表二、扣帶迴神經束結構完整性之組間比較 40 表三、扣帶迴結構完整性與整體認知功能及執行功能之相關性 41 附圖 42 圖一、Montreal Neurological Institute template(MNI template)之扣帶迴興趣區域 42 圖二、mean path algorithm 示意圖 43 圖三、特定神經纖維束分析法中前、中、後段扣帶迴神經束之分界點 44 圖四、興趣區域分析法中各興趣區域置放處 45 圖五、三組受試者以特定神經纖維束分析法所重建之扣帶迴神經束及各段GFA 值 46 圖六、以特定神經纖維束分析法重建扣帶迴神經束結構完整性之組間比較 47 圖七、以興趣區域分析法計算所得扣帶迴神經束結構完整性之組間比較 48 圖八、輕度知能障礙患者與輕度阿茲海默症患者之扣帶迴結構完整性與執行功 能及整體認知功能相關性散布圖 49 圖九、一輕度阿茲海默症患者(A17)之前扣帶迴神經束終止於接近前額葉之處 50 附錄 51 附錄一、Vogt等人(2005)扣帶迴皮質分區方式 51 附錄二、扣帶迴皮質區各分區主要連結區域以及參與之認知功能 52 附錄三、過去文獻採用興趣區域分析法時所放置扣帶迴神經束之興趣區域 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 輕度知能障礙 | zh_TW |
| dc.subject | 扣帶迴神經束 | zh_TW |
| dc.subject | 擴散頻譜磁振造影 | zh_TW |
| dc.subject | 特定神經纖維束分析法 | zh_TW |
| dc.subject | diffusion spectrum imaging | en |
| dc.subject | alzheimer's disease | en |
| dc.subject | mild cognitive impairment | en |
| dc.subject | cingulum bundle | en |
| dc.subject | tract-specific analysis | en |
| dc.title | 輕度知能障礙與輕度阿茲海默症患者之執行功能與扣帶迴神經束結構完整性之相關性 | zh_TW |
| dc.title | The Relationship between Executive Function and the Integrity of Cingulum Bundle in Patients with Mild Cognitive Impairment and Patients withMild Alzheimer’s Disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邱銘章 | |
| dc.contributor.oralexamcommittee | 曾文毅 | |
| dc.subject.keyword | 阿茲海默症,輕度知能障礙,扣帶迴神經束,擴散頻譜磁振造影,特定神經纖維束分析法, | zh_TW |
| dc.subject.keyword | alzheimer's disease,mild cognitive impairment,cingulum bundle,diffusion spectrum imaging,tract-specific analysis, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
