請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64927
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
dc.contributor.author | Chien-Lin Lee | en |
dc.contributor.author | 李建霖 | zh_TW |
dc.date.accessioned | 2021-06-16T23:08:20Z | - |
dc.date.available | 2020-03-12 | |
dc.date.copyright | 2020-03-12 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-24 | |
dc.identifier.citation | Alastuey, A., et al. (2006). 'Identification and chemical characterization of industrial particulate matter sources in southwest Spain.' Journal of the Air & Waste Management Association 56(7): 993-1006.
Amato, F. and P. K. Hopke (2012). 'Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization.' Atmospheric Environment 46: 329-337. Beelen, R., et al. (2014). 'Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project.' Lancet 383(9919): 785-795. Begum, B. A., et al. (2005). 'Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh.' Journal of the Air & Waste Management Association 55(2): 227-240. Belis, C. A., et al. (2013). 'Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe.' Atmospheric Environment 69: 94-108. Burnett, R., et al. (2018). 'Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.' Proceedings of the National Academy of Sciences of the United States of America 115(38): 9592-9597. Chen, S. C., et al. (2010). 'Chemical Mass Closure and Chemical Characteristics of Ambient Ultrafine Particles and other PM Fractions.' Aerosol Science and Technology 44(9): 713-723. Chow, J. C., et al. (2007). 'The IMPROVE-A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database.' Journal of the Air & Waste Management Association 57(9): 1014-1023. Christensen, W. F. and R. F. Gunst (2004). 'Measurement error models in chemical mass balance analysis of air quality data.' Atmospheric Environment 38(5): 733-744. Christensen, W. F., et al. (2006). 'Iterated confirmatory factor analysis for pollution source apportionment.' Environmetrics 17(6): 663-681. Cooper, J. A. and J. G. Watson (1980). 'RECEPTOR ORIENTED METHODS OF AIR PARTICULATE SOURCE APPORTIONMENT.' Journal of the Air Pollution Control Association 30(10): 1116-1125. de Hoogh, K., et al. (2013). 'Development of Land Use Regression Models for Particle Composition in Twenty Study Areas in Europe.' Environmental Science & Technology 47(11): 5778-5786. Deng, T., et al. (2018). 'Numerical simulations for the sources apportionment and control strategies of PM2.5 over Pearl River Delta, China, part II: Vertical distribution and emission reduction strategies.' Science of the Total Environment 634: 1645-1656. Eeftens, M., et al. (2012). 'Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project.' Environmental Science & Technology 46(20): 11195-11205. Eeftens, M., et al. (2014). 'Elemental Composition of Particulate Matter and the Association with Lung Function.' Epidemiology 25(5): 648-657. Gao, Y., et al. (2016). 'Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model.' Frontiers of Earth Science 11(2): 347-360. Gramsch, E., et al. (2004). 'Use of the light absorption coefficient to monitor elemental carbon and PM2.5 - Example of Santiago de Chile.' Journal of the Air & Waste Management Association 54(7): 799-808. Gugamsetty, B., et al. (2012). 'Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization.' Aerosol and Air Quality Research 12(4): 476-491. Han, J. S., et al. (2006). 'Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia.' Atmospheric Chemistry and Physics 6: 211-223. Heo, J., et al. (2014). 'Fine Particle Air Pollution and Mortality Importance of Specific Sources and Chemical Species.' Epidemiology 25(3): 379-388. Ho, C.-C., et al. (2015). 'Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area.' Atmospheric Environment 104: 256-263. Ho, W. Y., et al. (2018). 'Application of Positive Matrix Factorization in the Identification of the Sources of PM2.5 in Taipei City.' Int J Environ Res Public Health 15(7). Hoek, G., et al. (2002). 'Spatial variability of fine particle concentrations in three European areas.' Atmospheric Environment 36(25): 4077-4088. Hopke, P. K. (2016). 'Review of receptor modeling methods for source apportionment.' Journal of the Air & Waste Management Association 66(3): 237-259. Hsu, S. C., et al. (2005). 'Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions.' Science of the Total Environment 347(1-3): 111-121. Huntzicker, J. J., et al. (1982). Analysis of Organic and Elemental Carbon in Ambient Aerosols by a Thermal-Optical Method. Particulate Carbon: Atmospheric Life Cycle. G. T. Wolff and R. L. Klimisch. Boston, MA, Springer US: 79-88. Ito, K., et al. (2006). 'PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC.' J Expo Sci Environ Epidemiol 16(4): 300-310. Janhall, S., et al. (2003). 'Vertical distribution of air pollutants at the Gustavii Cathedral in Goteborg, Sweden.' Atmospheric Environment 37(2): 209-217. Jayaratne, R., et al. (2018). 'The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog.' Atmospheric Measurement Techniques 11(8): 4883-4890. Jin, X. C., et al. (2016). 'Source apportionment of PM2.5 in Beijing using positive matrix factorization.' Journal of Radioanalytical and Nuclear Chemistry 307(3): 2147-2154. Kalaiarasan, M., et al. (2009). 'Traffic-generated airborne particles in naturally ventilated multi-storey residential buildings of Singapore: Vertical distribution and potential health risks.' Building and Environment 44(7): 1493-1500. Kampa, M. and E. Castanas (2008). 'Human health effects of air pollution.' Environmental Pollution 151(2): 362-367. Kim, E., et al. (2003). 'Source identification of Atlanta aerosol by positive matrix factorization.' Journal of the Air & Waste Management Association 53(6): 731-739. Kim, E., et al. (2004). 'Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization.' Atmospheric Environment 38(20): 3349-3362. Kim, E., et al. (2005). 'Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis.' Environmental Science & Technology 39(11): 4172-4179. Kizel, F., et al. (2018). 'Node-to-node field calibration of wireless distributed air pollution sensor network.' Environ Pollut 233: 900-909. Kuo, C. P., et al. (2014). 'Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data.' Science of the Total Environment 472: 880-887. Kuo, Y.-M., et al. (2011). 'Identifying the factors influencing PM2.5 in southern Taiwan using dynamic factor analysis.' Atmospheric Environment 45(39): 7276-7285. Lai, A. M., et al. (2019). 'Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China.' Sci Total Environ 646: 309-319. Lee, E., et al. (1999). 'Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong.' Atmospheric Environment 33(19): 3201-3212. Li, Y. Y., et al. (2017). 'Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management.' Journal of Environmental Management 196: 16-25. Liang, B. L., et al. (2019). 'Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China.' Ecotoxicology and Environmental Safety 170: 166-171. Liao, H.-T., et al. (2017). 'Source apportionment of PM 2.5 size distribution and composition data from multiple stationary sites using a mobile platform.' Atmospheric Research 190: 21-28. Liao, H. T., et al. (2019). 'Vertical distribution of source apportioned PM2.5 using particulate-bound elements and polycyclic aromatic hydrocarbons in an urban area.' J Expo Sci Environ Epidemiol. Liao, H. T., et al. (2015). 'Source and risk apportionment of selected VOCs and PM(2).(5) species using partially constrained receptor models with multiple time resolution data.' Environ Pollut 205: 121-130. Liao, H. T., et al. (2017). 'Source apportionment of urban air pollutants using constrained receptor models with a priori profile information.' Environ Pollut 227: 323-333. Lin, P., et al. (2019). 'Comparison of PM2.5 emission rates and source profiles for traditional Chinese cooking styles.' Environ Sci Pollut Res Int 26(21): 21239-21252. Lingwall, J. W. and W. F. Christensen (2007). 'Pollution source apportionment using a priori information and positive matrix factorization.' Chemometrics and Intelligent Laboratory Systems 87(2): 281-294. Lu, X. C., et al. (2019). 'Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden.' Science of the Total Environment 652: 683-695. Marcazzan, G. M., et al. (2001). 'Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy).' Atmospheric Environment 35(27): 4639-4650. Marple, V. A., et al. (1987). 'LOW FLOW-RATE SHARP CUT IMPACTORS FOR INDOOR AIR SAMPLING - DESIGN AND CALIBRATION.' Japca-the International Journal of Air Pollution Control and Hazardous Waste Management 37(11): 1303-1307. Miller, S. L., et al. (2002). 'Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data.' Atmospheric Environment 36(22): 3629-3641. Paatero, P. (1999). 'The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model.' Journal of Computational and Graphical Statistics 8(4): 854-888. Paatero, P. and P. K. Hopke (2009). 'Rotational Tools for Factor Analytic Models.' Journal of Chemometrics 23(1-2): 91-100. Paatero, P. and U. Tapper (1994). 'POSITIVE MATRIX FACTORIZATION - A NONNEGATIVE FACTOR MODEL WITH OPTIMAL UTILIZATION OF ERROR-ESTIMATES OF DATA VALUES.' Environmetrics 5(2): 111-126. Pakkanen, T. A., et al. (2003). 'Size distributions of mass and chemical components in street-level and rooftop PM1 particles in Helsinki.' Atmospheric Environment 37(12): 1673-1690. Polissar, A. V., et al. (2001). 'Atmospheric aerosol over Vermont: Chemical composition and sources.' Environmental Science & Technology 35(23): 4604-4621. Qi, L., et al. (2016). 'Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China.' Atmosphere 7(12): 21. Quang, T. N., et al. (2012). 'Vertical particle concentration profiles around urban office buildings.' Atmospheric Chemistry and Physics 12(11): 5017-5030. Raaschou-Nielsen, O., et al. (2013). 'Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE).' Lancet Oncology 14(9): 813-822. Reff, A., et al. (2007). 'Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods.' Journal of the Air & Waste Management Association 57(2): 146-154. Sahu, M., et al. (2011). 'Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate.' Science of the Total Environment 409(13): 2642-2651. Simon, H., et al. (2010). 'The development and uses of EPA's SPECIATE database.' Atmospheric Pollution Research 1(4): 196-206. Sun, Y. L., et al. (2004). 'The air-borne particulate pollution in Beijing - concentration, composition, distribution and sources.' Atmospheric Environment 38(35): 5991-6004. Turner, M. C., et al. (2017). 'Interactions between cigarette smoking and ambient PM2.5 for cardiovascular mortality.' Environmental Research 154: 304-310. Viana, M., et al. (2009). 'Chemical Tracers of Particulate Emissions from Commercial Shipping.' Environmental Science & Technology 43(19): 7472-7477. Viana, M., et al. (2008). 'Source apportionment of particulate matter in Europe: A review of methods and results.' Journal of Aerosol Science 39(10): 827-849. Weber, S., et al. (2006). 'Flow characteristics and particle mass and number concentration variability within a busy urban street canyon.' Atmospheric Environment 40(39): 7565-7578. Wu, C. F., et al. (2005). 'Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers.' Atmospheric Environment 39(19): 3457-3469. Wu, C. F., et al. (2007). 'Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle.' Science of the Total Environment 386(1-3): 42-52. Xiao, Z., et al. (2012). 'Vertical characteristics and source identification of FM10 in Tianjin.' Journal of Environmental Sciences 24(1): 112-115. Yu, L. D., et al. (2013). 'Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing.' Aerosol and Air Quality Research 13(2): 574-583. Zauli Sajani, S., et al. (2018). 'Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building.' Environ Pollut 235: 339-349. Zhao, W. X. and P. K. Hopke (2004). 'Source apportionment for ambient particles in the San Gorgonio wilderness.' Atmospheric Environment 38(35): 5901-5910. Zheng, T. S., et al. (2018). 'Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments.' Atmospheric Measurement Techniques 11(8): 4823-4846. 聯合國人口司. (2018) retrieved from https://population.un.org/wup/Publications/ 張容綺. (2017). 應用正矩陣因子模型探討台北都會區細懸浮微粒元素成分來源之垂直空間變異. (碩士), 國立臺灣大學, 台北市 高彣潔. (2018). 利用高時間解析度資料進行台北地區細懸浮微粒來源分析與探討該地區細懸浮微粒成份之垂直空間變異. (碩士), 國立臺灣大學, 台北市 吳欣育. (2018). 利用受體模式評估都會區細懸浮微粒上多環芳香烴濃度與來源貢獻垂直分布. (碩士), 國立臺灣大學, 台北市 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64927 | - |
dc.description.abstract | 越來越多研究證實細懸浮微粒(fine particle matter, PM2.5)與各種慢性及急性疾病有相關,空氣污染成為民眾極度關心的議題,PM2.5的成分以及污染來源也開始備受討論。PM2.5及其成分的濃度具有水平及垂直空間上的變異,過往較多針對水平空間變異的研究;較少研究探討污染物及污染源的垂直變異。本研究透過長時間的樓層採樣,量測PM2.5及其成分在不同季節及垂直高度下的濃度變化,並藉由受體模式分析台北都會區的主要污染源以及各污染源的貢獻比例、成份組成以及垂直變異。
採樣使用哈佛採樣器搭配鐵氟龍與石英濾紙採集24小時的樣本,以一週兩次的頻率在台北市辛亥路上某建築物的三樓、七樓、十一樓之陽台進行採樣,採樣時間為10個月(2018年6月-2019年3月),觀察PM2.5與其成份在不同高度的濃度以探討台北都會區的空氣污染的垂直分布狀況。分析物種包含PM2.5濃度、16種無機元素、有機碳與元素碳濃度以及吸收係數。 本研究使用正矩陣因子法(Positive Matrix Factorization model, PMF),並透過多重線性引擎(Multilinear Engine)建立改良版PMF源解析模式,使樓層資料解析時,能得出一致的污染源圖譜(source profile),並假設不同的污染源在不同樓層貢獻之時間序列有相同趨勢,但濃度具一定比例關係。藉由模式模擬的方法,驗證改良版ME-2源解析模型能比美國環保署PMF軟體解出更精確的污染源解。另進一步探討將此模型應用在同時具水平變異與垂直變異的採樣點時,將不同棟的資料合併或獨立解析的結果差異,得出只要水平變異中污染源圖譜變異在一定比例以下,將資料合併解析會更適合。 在實地研究部分,於低樓層可以觀察到最高的PM2.5濃度(12.66 μg/m3),其次依序為中樓層(12.61 μg/m3)、高樓層(12.38 μg/m3)。接著應用改良版源解析模型在實際樓層採樣的資料,結果發現貢獻比例最高的為二次氣膠污染物以及交通排放,其次分別為重油燃燒、工廠排放、土壤粉塵以及一個由生質燃燒與海洋飛沫組成的混合解。其中,交通排放的指標元素如Cu與有機碳、元素碳,以及模式所解之交通污染源皆觀察到在低樓層有較高濃度的顯著垂直變異關係,而其餘污染源相較沒有垂直上的變異,顯示交通污染可能是細懸浮微粒具有垂直變異的關鍵因素之一。 | zh_TW |
dc.description.abstract | Several studies have demonstrated that exposure to fine particles (PM2.5) could cause both acute and chronic adverse health effects. It is necessary to identify and quantify the contributions of PM2.5 sources. The concentration of air pollution shows considerable spatial variations. However, most studies only evaluated horizontal variability of PM2.5 and its elemental composition. The vertical variation of PM concentrations has not been widely studied.
In this study, vertical variations of PM2.5 were measured by sampling at three different floors (3F, 7F, 11F) at a building on a major road in Taipei metropolis twice a week for ten months. PM2.5 samples were collected to analyze mass concentrations, absorption coefficient and concentrations of 16 inorganic elements, organic carbon and elemental carbon. Positive matrix factorization (PMF) model was used to quantify the contribution of the sources at the receptor site. The Multilinear Engine (ME) program, a flexible tool for solving PMF problems, was applied for receptor modeling. It was assumed that time series of resolved factor contributions at different floors should have similar trends while source profiles should be the same. The evaluation of the modified source apportionment model was first conducted by using simulation data. It was showed that the improved model performed better than the EPA PMF software. Furthermore, the average absolute error (AAE) was calculated to examine how profile variation affected the model performance. In the field study, the highest average PM2.5 mass concentration was observed at the low-level floor (12.66 μg/m3), followed by the mid-level floor (12.61 μg/m3¬¬) and the high-level floor (12.38 μg/m3). With the modified source apportionment model, it was found that secondary aerosol and traffic related pollution were the primary sources in Taipei city, followed by oil combustion, industry emission, soil dust, and a mixed source composed of biomass burning and marine aerosol. Traffic related source and its tracer such as Cu, organic and elemental carbon showed significant difference between high-level sites and other two altitudes. However, apparent vertical variation was not observed for most components and sources. Therefore, traffic related source might be a key factor for vertical variation of PM2.5. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:08:20Z (GMT). No. of bitstreams: 1 ntu-109-R06841006-1.pdf: 2120206 bytes, checksum: 90c379b98a14393efe34bcb372f884a4 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 目 錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 第二章 研究方法 4 2.1 資料蒐集 4 2.1.1 採樣規劃 4 2.1.2 分析方法 4 2.1.3 直讀式監測儀器 6 2.2 受體模式 8 2.2.1 受體模式原理 8 2.2.2 污染源數目 9 2.2.3 ME-2與限制模式 10 2.3 模式模擬 11 2.3.1 垂直變異 11 2.3.2 水平變異 11 2.3.3 模擬方法 12 2.4 資料品質管理與品質保證 14 2.4.1 濾紙秤重 14 2.4.2 採樣 14 2.4.3 分析 14 2.4.4 資料處理 15 第三章 研究結果與討論 17 3.1 描述性統計 17 3.1.1 手動採樣結果 17 3.1.2 時序性變異 17 3.1.3 PM2.5及其成分濃度之垂直變異 18 3.1.4 直讀式監測儀器結果分析 19 3.2 模式模擬結果 21 3.2.1 污染源貢獻與圖譜 21 3.2.2 垂直變異 21 3.2.3 水平變異 22 3.3 採樣資料之污染源解析 24 3.3.1 輸入資料 24 3.3.2 決定污染源數目 24 3.3.3 污染源辨別 25 3.3.4 污染源貢獻與垂直比例 27 3.4 研究限制 30 第四章 總結 31 第五章 參考文獻 53 第六章 附錄 61 | |
dc.language.iso | zh-TW | |
dc.title | 利用改良版受體模式分析都市中細懸浮微粒之污染來源與垂直貢獻比例 | zh_TW |
dc.title | Vertical Distribution and Source Apportionment of Urban Particulate Matter Using a Modified Receptor Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳志傑(Chih-Chieh Chen),蔡詩偉(Shih-Wei Tsai) | |
dc.subject.keyword | 細懸浮微粒,成份元素,正矩陣因子模型,垂直變異, | zh_TW |
dc.subject.keyword | fine particulate matter,elemental components,positive matrix factorization,vertical variation, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU202000580 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-25 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。