請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64923完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙丰,張翠玉 | |
| dc.contributor.author | Tsung-Jung Shih | en |
| dc.contributor.author | 施宗融 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:08:12Z | - |
| dc.date.available | 2012-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | Agnew, D.C. & Farrell, W.E., 1978. Self-Consistent Equilibrium Ocean Tides, Geophys. J. Roy. Astr. Soc., 55, 171-181.
Agnew, D.C., 2007. Earth tides, in Treatise on Geophysics, pp. 163 -195, ed Schubert, G. Elsevier, Amsterdam. Anderson, D.L. & Archambeau, C., 1964. Anelasticity of Earth, J. Geophys. Res., 69, 2071. Anderson, D.L. & Minster, J.B., 1979. Frequency-Dependence of Q in the Earth and Implications for Mantle Rheology and Chandler Wobble, Geophys. J. Roy. Astr. Soc., 58, 431-440. Anderson, J.R. & Rosen, R.D., 1983. The Latitude-Height Structure of 40-50 Day Variations in Atmospheric Angular-Momentum, J. Atmos. Sci., 40, 1584-1591. Aoyama, Y. & Naito, I., 2000. Wind contributions to the Earth's angular momentum budgets in seasonal variation, J. Geophys. Res., 105, 12417-12431. Asari, S., Shimizu, H. & Utada, H., 2006. Variability of the topographic core-mantle torque calculated from core surface flow models, Phys. Earth Planet In., 154, 85-111. Barnes, R.T.H., Hide, R., White, A.A. & Wilson, C.A., 1983. Atmospheric Angular-Momentum Fluctuations, Length-of-Day Changes and Polar Motion, Proc. Roy. Soc. Lond., 387, 31-73. Benjamin, D., Wahr, J., Ray, R.D., Egbert, G.D. & Desai, S.D., 2006. Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly, Geophys. J. Int., 165, 3-16. Bloxham, J. & Jackson, A., 1991. Fluid flow near the surface of Earth's outer core, Rev. Geophys., 29, 97-120. Buffett, B.A., 1996. Gravitational oscillations in the length of day, Geophys. Res. Lett., 23, 2279-2282. Cartwright, D.E. & Tayler, R.J., 1971. New Computations of Tide-Generating Potential, Geophys. J. Roy. Astr. Soc., 23. Cartwright, D.E. & Ray, R.D., 1990. Observations of the Mf Ocean Tide from Geosat Altimetry, Geophys. Res. Lett., 17, 619-622. Chao, B.F. & Gilbert, F., 1980. Autoregressive estimation of complex eigenfrequencies in low frequency seismic spectra, Geophys. J. Roy. Astr. Soc., 63, 641-657. Chao, B.F., 1984. Interannual Length-of-Day Variation with Relation to the Southern Oscillation El-Nino, Geophys. Res. Lett., 11, 541-544. Chao, B.F., 1985. As the world turns, Eos Trans. American Geophysical Union, 66, 766-770. Chao, B.F. & Oconnor, W.P., 1988. Global Surface-Water-Induced Seasonal-Variations in the Earths Rotation and Gravitational-Field, Geophysical Journal-Oxford, 94, 263-270. Chao, B.F., 1989. Length-of-Day Variations Caused by El-Nino - Southern Oscillation and Quasi-Biennial Oscillation, Science, 243, 923-925. Chao, B.F., Merriam, J.B. & Tamura, Y., 1995. Geophysical Analysis of Zonal Tidal Signals in Length of Day, Geophys. J. Int., 122, 765-775. Chao, B.F. & Naito, I., 1995. Wavelet analysis provides a new tool for studying Earth's rotation, Eos Trans. American Geophysical Union, 76, 161-165. Chen, J.L., Wilson, C.R., Chao, B.F., Shum, C.K. & Tapley, B.D., 2000. Hydrological and oceanic excitations to polar motion and length-of-day variation, Geophys. J. Int., 141, 149-156. Chen, J.L. & Wilson, C.R., 2005. Hydrological excitations of polar motion, 1993-2002, Geophys. J. Int., 160, 833-839. Chou, C.W., 2010. Wavelet spectral analysis and the elastic Earth's response of long-period tides in 46 years length of day, Master Thesis, National Central University. Dahlen, F.A., 1976. Passive Influence of Oceans Upon Rotation of Earth, Geophys. J. Roy. Astr. Soc., 46, 363-406. Dahlen, F.A. & Tromp, J., 1998. Theoretical global seismology, Princeton University Press, Princeton, New Jersey. Defraigne, P. & Smits, I., 1999. Length of day variations due to zonal tides for an inelastic Earth in non-hydrostatic equilibrium, Geophys. J. Int., 139, 563-572. Desai, S.D. & Wahr, J.M., 1999. Monthly and fortnightly tidal variations of the Earth's rotation rate predicted by a TOPEX/POSEIDON Empirical Ocean Tide Model, Geophys. Res. Lett., 26, 1035-1038. Dickey, J.O., Ghil, M. & Marcus, S.L., 1991. Extratropical Aspects of the 40-50 Day Oscillation in Length-of-Day and Atmospheric Angular-Momentum, J. Geophys. Res., 96, 22643-22658. Dickey, J.O., Marcus, S.L., Hide, R., Eubanks, T.M. & Boggs, D.H., 1994. Angular-Momentum Exchange among the Solid Earth, Atmosphere, and Oceans - a Case-Study of the 1982-1983 El-Ni隳 Event, J. Geophys. Res., 99, 23921-23937. Dickey, J.O., Gegout, P. & Marcus, S.L., 1999. Earth-atmosphere angular momentum exchange and ENSO: The rotational signature of the 1997-98 event, Geophys. Res. Lett., 26, 2477-2480. Dickman, S.R., 1993. Dynamic Ocean-Tide Effects on Earths Rotation, Geophys. J. Int., 112, 448-470. Dickman, S.R. & Nam, Y.S., 1995. Revised Predictions of Long-Period Ocean Tidal Effects on Earths Rotation Rate, J. Geophys. Res., 100, 8233-8243. Dickman, S.R. & Nam, Y.S., 1998. Constraints on Q at long periods from Earth's rotation, Geophys. Res. Lett., 25, 211-214. Dickman, S.R., 2000. Tectonic and cryospheric excitation of the Chandler wobble and a brief review of the secular motion of Earth's rotation pole, Astr. Soc. P., 208, 421-435. Djurovic, D., 1976. Determinations of k-Love Number and Factor-Lambda Which Affect Observations of Universal Time, Astron. Astrophys., 47, 325-332. Djurovic, D. & Paquet, P., 1996. The common oscillations of solar activity, the geomagnetic field, and the Earth's rotation, Sol. Phys., 167, 427-439. Doodson, A.T., 1921. The harmonic development of the tide-generating potential, Proc. Roy. Soc. Lond., 100, 305-329. Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary Reference Earth Model, Phys. Earth Planet In., 25, 297-356. Egbert, G.D. & Ray, R.D., 2003. Deviation of long-period tides from equilibrium: Kinematics and geostrophy, J. Phys. Oceano., 33, 822-839. Englich, S., Schuh, H. & Weber, R., 2009. Short-term tidal variations in UT1: compliance between modelling and observation, Proc. Int. Astron. Uni., 5, pp. 215-215. Eubanks, T.M., 1993. Variations in the orientation of the Earth. in Contributions of Space Geodesy to Geodynamics: Earth Dynamics, pp. 1-54, eds Smith, D. E. & Turcotte, D. L. American Geophysical Union, Washington, D.C. Farrell, W.E., 1972. Deformation of Earth by Surface Loads, Rev. Geophys. Space Phys., 10, 761. Gilbert, F. & Dziewonski, A.M., 1975. Application of Normal Mode Theory to Retrieval of Structural Parameters and Source Mechanisms from Seismic Spectra, Philos. Trans. Roy. Soc., 278, 187-269. Gillet, N., Jault, D., Canet, E. & Fournier, A., 2010. Fast torsional waves and strong magnetic field within the Earth's core, Nature, 465, 74-77. Gross, R.S., 2001. A combined length-of-day series spanning 1832-1997: LUNAR97, Phys. Earth Planet In., 123, 65-76. Gross, R.S., Fukumori, I., Menemenlis, D. & Gegout, P., 2004. Atmospheric and oceanic excitation of length-of-day variations during 1980-2000, J. Geophys. Res., 109. Gross, R.S., Fukumori, I. & Menemenlis, D., 2005. Atmospheric and oceanic excitation of decadal-scale Earth orientation variations, J. Geophys. Res., 110. Gross, R.S., 2007. Earth rotation variations: long period, in Treatise on Geophysics, pp. 239-294, ed Schubert, G. Elsevier, Amsterdam. Gross, R.S., 2009. Ocean tidal effects on Earth rotation, J. Geodyn., 48, 219-225. Guinot, B., 1974. Determination of Love Number k from Periodic-Waves of UT1, Astron. Astrophys., 36, 1-4. Hartmann, T. & Wenzel, H.G., 1995. The HW95 tidal potential catalogue, Geophys. Res. Lett., 22, 3553-3556. Hefty, J. & Capitaine, N., 1990. The Fortnightly and Monthly Zonal Tides in the Earths Rotation from 1962 to 1988, Geophys. J. Int., 103, 219-231. Hendon, H.H., 1995. Length of Day Changes Associated with the Madden-Julian Oscillation, J. Atmos. Sci., 52, 2373-2383. Hide, R., Birch, N.T., Morrison, L.V., Shea, D.J. & White, A.A., 1980. Atmospheric Angular-Momentum Fluctuations and Changes in the Length of the Day, Nature, 286, 114-117. Hide, R. & Dickey, J.O., 1991. Earth's Variable Rotation, Science, 253, 629-637. Hide, R., Boggs, D.H. & Dickey, J.O., 2000. Angular momentum fluctuations within the Earth's liquid core and torsional oscillations of the core-mantle system, Geophys. J. Int., 143, 777-786. Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J., 2001. Global Positioning System : theory and practice, 5th. Springer-Verlag, New York. Jackson, A., Bloxham, J. & Gubbins, D., 1993. Time-Dependent Flow at the Core Surface and Conservation of Angular-Momentum in the Coupled Core-Mantle System, Geophys. Monog. Series, 72, 97-107. Jackson, A., 1997. Time-dependency of tangentially geostrophic core surface motions, Phys. Earth Planet In., 103, 293-311. Jault, D., Gire, C. & Lemouel, J.L., 1988. Westward Drift, Core Motions and Exchanges of Angular-Momentum between Core and Mantle, Nature, 333, 353-356. Jeffreys, H., 1928. Possible Tidal Effects on Accurate Time-keeping, Geophys. J. Int., 56-58. Kantha, L.H., Stewart, J.S. & Desai, S.D., 1998. Long-period lunar fortnightly and monthly ocean tides, J. Geophys. Res., 103, 12639-12647. Karato, S., 1993. Importance of Anelasticity in the Interpretation of Seismic Tomography, Geophys. Res. Lett., 20, 1623-1626. Kouba, J. & Vondrak, J., 2005. Comparison of length of day with oceanic and atmospheric angular momentum series, J. Geodesy, 79, 256-268. Kuang, W.J. & Chao, B.F., 2001. Topographic Core-Mantle coupling in Geodynamo modeling, Geophys. Res. Lett., 28, 1871-1874. Lambeck, K., 1980. The Earth's variable rotation : geophysical causes and consequences, Cambridge University Press, Cambridge ; New York. Lambeck, K., 1988. Geophysical geodesy : the slow deformations of the Earth, Oxford University Press, Oxford England. Love, A.E.H., 1909. The yielding of the Earth to distributing forces, Proc. Roy. Soc. Lond., 82, 73-88. Madden, R.A. & Julian, P.R., 1971. Detection of a 40-50 Day Oscillation in Zonal Wind in Tropical Pacific, J. Atmos. Sci., 28, 702. Madden, R.A. & Julian, P.R., 1972. Description of Global-Scale Circulation Cells in Tropics with a 40-50 Day Period, J. Atmos. Sci., 29, 1109 Madden, R.A. & Julian, P.R., 1994. Observations of the 40-50-Day Tropical Oscillation - a Review, Mon. Weather Rev., 122, 814-837. Marcus, S.L., Dickey, J.O. & De Viron, O., 2001. Links between intraseasonal. (extended MJO) and ENSO timescales: Insights via geodetic and atmospheric analysis, Geophys. Res. Lett., 28, 3465-3468. Markowitz, W., 1960. Latitude and longitude, and the secular motion of the pole, in Methods and Techniques in Geophysics, pp. 325-361, ed Runcorn, S. K. Interscience Publishers, New York. McCarthy, D.D. & Babcock, A.K., 1986. The Length of Day since 1656, Phys. Earth Planet In., 44, 281-292. McCarthy, D.D. & Luzum, B.J., 1993. An Analysis of Tidal Variations in the Length of Day, Geophys. J. Int., 114, 341-346. McCarthy, D. & Petit, G., 2004. IERS Conventions (2003). IERS Tech. Note no. 32, pp. 127, Frankfurt, Germany: Bundesamts fur Kartographie und Geodasie. Merriam, J.B., 1980. Zonal tides and changes in the length of day, Geophys. J. Roy. Astr. Soc., 551-561. Merriam, J.B., 1982. A Comparison of Recent Theoretical Results on the Short-Period Terms in the Length of Day, Geophys. J. Roy. Astr. Soc., 69, 837-840. Merriam, J.B., 1984. Tidal Terms in Universal Time - Effects of Zonal Winds and Mantle-Q, J. Geophys. Res., 89, 109-114. Merriam, J.B., 1985. Lageos and UT Measurements of Long-Period Earth Tides and Mantle-Q, J. Geophys. Res., 90, 9423-9430. Merriam, J.B., 1995. Nonlinear Tides Observed with the Superconducting Gravimeter, Geophys. J. Int., 123, 529-540. Miller, A.J., Luther, D.S. & Hendershott, M.C., 1993. The Fortnightly and Monthly Tides - Resonant Rossby Waves or Nearly Equilibrium Gravity-Waves, J. Phys. Oceano., 23, 879-897. Moritz, H. & Mueller, I.I., 1987. Earth rotation : theory and observation, Ungar, New York. Morlet, J., Arens, G., Fourgeau, E. & Giard, D., 1982. Wave-Propagation and Sampling Theory, Geophysics, 47, 203-221. Mound, J.E. & Buffett, B.A., 2003. Interannual oscillations in length of day: Implications for the structure of the mantle and core, J. Geophys. Res., 108. Mound, J.E. & Buffett, B.A., 2005. Mechanisms of core-mantle angular momentum exchange and the observed spectral properties of torsional oscillations, J. Geophys. Res., 110. Munk, W.H. & MacDonald, G.J., 1960. The Rotation of the Earth; a geophysical discussion, University Press, Cambridge England. Munk, W.H. & Cartwright, D.E., 1966. Tidal Spectroscopy and Prediction, Philos. Trans. Roy. Soc., 259. Pais, A. & Hulot, G., 2000. Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows, Phys. Earth Planet In., 118, 291-316. Pawlowicz, R., Beardsley, B. & Lentz, S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Computer Geoscience, 28, 929-937. Platzman, G.W., 1984. Normal Modes of the World Ocean 4: Synthesis of Diurnal and Semidiurnal Tides, J. Phys. Oceano., 14, 1532-1550. Poma, A., Proverbio, E. & Uras, S., 1987. Long-Term Variations in the Earth's Motion and Crustal Movements, J. Geodyn., 8, 245-261. Ponsar, S., Dehant, V., Holme, R., Jault, D., Pais, A. & Van Hoolst, T., 2003. The core and fluctuations in the Earth's rotation. in Earth's Core: Dynamics, Structure, Rotation, pp. 251-261, eds Dehant, V., Creager, K., Karato, S. & Zatman, S. American Geophysical Union, Washington, D.C. Proudman, J., 1960. The Condition That a Long-Period Tide Shall Follow the Equilibrium-Law, Geophys. J. Roy. Astr. Soc., 3, 244-249. Ratcliff, J.T., Gross, R. S., 2010. Combinations of Earth orientation measurements: SPACE2009, COMB2009, and POLE2009, Jet Propulsion Laboratory Pub., 10-22, 29 pp., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. Ray, R.D., Eanes, R.J. & Lemoine, F.G., 2001. Constraints on energy dissipation in the Earth's body tide from satellite tracking and altimetry, Geophys. J. Int., 144, 471-480. Ray, R.D. & Egbert, G.D., 2012. Fortnightly Earth rotation, ocean tides and mantle anelasticity, Geophys. J. Int., 189, 400-413. Robertson, D.S., 1991. Geophysical Applications of Very-Long-Baseline Interferometry, Rev. Mod. Phys., 63, 899-918. Robertson, D.S., Ray, J.R. & Carter, W.E., 1994. Tidal Variations in UT1 Observed with Very-Long-Baseline Interferometry, J. Geophys. Res., 99, 621-636. Rochester. M.G. & Smylie, D.E., 1974. Changes in Trace of Earths Inertia Tensor, J. Geophys. Res., 79, 4948-4951. Rochester, M.G., 1984. Causes of Fluctuations in the Rotation of the Earth, Philos. Trans. Roy. Soc., 313, 95-105. Rosen, R.D., 1993. The Axial Momentum Balance of Earth and Its Fluid Envelope, Surveys in Geophys., 14, 1-29. Sailor, R.V. & Dziewonski, A.M., 1978. Measurements and Interpretation of Normal Mode Attenuation, Geophys. J. Roy. Astr. Soc., 53, 559-581. Salstein, D.A., Kann, D.M., Miller, A.J. & Rosen, R.D., 1993. The Sub-Bureau for Atmospheric Angular-Momentum of the International Earth Rotation Service - a Meteorological Data Center with Geodetic Applications, Am. Meteorol. Soc., 74, 67-80. Schastok, J., Soffel, M. & Ruder, H., 1994. A Contribution to the Study of Fortnightly and Monthly Zonal Tides in UT1, Astron. Astrophys., 283, 650-654. Seiler, U., 1991. Periodic Changes of the Angular-Momentum Budget Due to the Tides of the World Ocean, J. Geophys. Res., 96, 10287-10300. Seiler, U. & Wunsch, J., 1995. A Refined Model for the Influence of Ocean Tides on UT1 and Polar Motion, Astron. Nachr., 316, 419-423. Sipkin, S.A. & Jordan, T.H., 1979. Frequency dependence of QScS, Bull. Seism. Soc. Am., 69, 1055-1079. Smith, M.L. & Dahlen, F.A., 1981. The Period and Q of the Chandler-Wobble, Geophys. J. Roy. Astr. Soc., 64, 223-281. Sovers, O.J., Fanselow, J.L. & Jacobs, C.S., 1998. Astrometry and geodesy with radio interferometry: experiments, models, results, Rev. Mod. Phys., 70, 1393-1454. Stacey, F.D., 2008. Physics of the earth, 4th Cambridge University Press, Cambridge ; New York. Stephenson, F.R. & Morrison, L.V., 1984. Long-Term Changes in the Rotation of the Earth - 700 B.C. to 1980 A.D., Philos. Trans. Roy. Soc., 313, 47-70. Tapley, B.D., Schutz, B.E., Eanes, R.J., Ries, J.C. & Watkins, M.M., 1993. Lageos laser ranging contributions to geodynamics, geodesy, and orbital dynamics, in Contributions of Space Geodesy to Geodynamics: Earth Dynamics, pp. 1-54, eds Smith, D. E. & Turcotte, D. L. American Geophysical Union, Washington, D. C. Thomson, D.J., 1982. Spectrum Estimation and Harmonic Analysis, Proc. IEEE, 70, 1055-1096. Wahr, J.M., Sasao, T. & Smith, M.L., 1981. Effect of the Fluid Core on Changes in the Length of Day Due to Long Period Tides, Geophys. J. Roy. Astr. Soc., 64, 635-650. Wahr, J. & Bergen, Z., 1986. The Effects of Mantle Anelasticity on Nutations, Earth Tides, and Tidal Variations in Rotation Rate, Geophys. J. Roy. Astr. Soc., 87, 633-668. Wicht, J. & Jault, D., 1999. Constraining electromagnetic core-mantle coupling, Phys. Earth Planet In., 111, 161-177. Wilhelm, H., Zurn, W. & Wenzel, H.G., 1997. Tidal Phenomena. Springer-Verlag, Berlin. Yan, H.M. & Chao, B.F., 2012. Effect of global mass conservation among geophysical fluids on the seasonal length of day variation, J. Geophys. Res., 117. Yoder, C.F., Williams, J.G. & Parke, M.E., 1981. Tidal Variations of Earth Rotation, J. Geophys. Res., 86, 881-891. Zhou, Y.H., Salstein, D.A. & Chen, J.L., 2006. Revised atmospheric excitation function series related to Earth's variable rotation under consideration of surface topography, J. Geophys. Res., 111. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64923 | - |
| dc.description.abstract | 本研究利用33年地球日長量測量值(美國太空總署噴射推進實驗室提供),計算彈性地球對長週期潮汐作用的反應係數κ。前人的研究大部分使用十到二十年間的觀測資料來估計κ值。因為近年來對不同時期量測資料的分析和整合,以及觀測技術的改進,我們可以用更長時間尺度、更精確的觀測資料來重新估計κ值。在角動量守恆下,地球系統整體質量分佈的變化會影響地球自轉的速度,其中也包含了長週期潮汐中的固體潮及海潮等。本研究依循Chao et al. (1995)的數值處理方式,先移除大氣角動量對日長變化量的影響後,計算各不同週期之天文引潮位勢與地球日長量變化之間的關係,並將兩者之間的關係以係數κ來描述。物理上,所求得的κ值,其大小及相位反應了地球的內部結構以及地表海水整體運動的訊息。對於一個符合平衡潮模式,彈性地幔以及其液態地核和地幔之各別運動無相關性的地球系統,其理論的κ約等於0.315,但實際上海潮並非是完美的平衡行為,讓κ的估計值分別對應到不同的潮汐週期,並使得κ值之大小些許的偏離理論值。此外,由於地球並非完美的彈性體,在海洋、地幔中對天文引潮位勢的反應並非如同彈性體的假設,使得κ值另外具有相位的部分,而κ值相對於平衡潮模式下所產生的的相位差,則對應到能量在這過程中的散失速率,以及地球內部結構的特性。藉由估計地球的κ值,可以用來推估地幔的滯彈性程度,以及各週期海潮偏離平衡潮的程度,進一步可以成為在反演海潮模式以及地球模型中的一個重要參考。我們希望藉由這些新的資料中所計算出來κ值的偏移量,去推估地球內部的性質,並期望能夠對建構現有的潮汐模型提供更多的資訊。 | zh_TW |
| dc.description.abstract | We estimate the Earth’s zonal tidal response coefficient κ from modern observed length-of-day (LOD) data for the period 1977-2009. Its magnitude and phase of κ contain important information about the Earth’s internal structure and dynamics. The influence of the atmospheric angular momentum (AAM) is firstly removed from the LOD data in order to better reveal the signals of long-period tides of periods ranging from 5 to 35 days. Numerical estimates of κ magnitude and phase lag are then obtained for 11 tides with sufficiently high signal to noise ratio (SNR). These estimates are compared with the theoretical baseline value, κ = 0.315, which is the value for a spherically symmetric Earth model under the additional assumptions of equilibrium long-period ocean tides and complete decoupling of the fluid core from the mantle. Comparison of our results with theoretical model computations is discussed in terms of possible frequency dependence of κ. Our κ amplitude and phase estimates are found to be consistent with two non-equilibrium ocean tide models, which are assimilated with precise sea surface height measurements provided by TOPEX/Poseidon satellite mission. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:08:12Z (GMT). No. of bitstreams: 1 ntu-101-R99241318-1.pdf: 6035915 bytes, checksum: 1bf82edef11c1b1c7421d81657ab7b63 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書.....................................................i
誌謝........................................................................ii 摘要........................................................................iii ABSTRACT..............................................................iv LIST OF FIGURES....................................................v LIST OF TABLES.....................................................vii Chapter1 Length of Day and Earth's Rotation...............1 Chapter2 Factors that influence the Earth's LOD.........10 2.1 Decadal variations...............................................12 2.2 Inter-annual variations..........................................16 2.3 Seasonal variations.............................................19 2.4 Intra-seasonal variations.......................................21 2.5 Tidal variations.....................................................23 Chapter3 Data Analysis & Results..............................25 3.1 ΔLOD data used in this study...............................25 3.2 Determination of zonal response coefficient κ.........28 3.2.1 Extracting tidal signals from ΔLOD by least-square fitting.....................................................28 3.2.2 Magnitude and Phase of κ..................................33 Chapter4 Discussions................................................36 4.1 Core-mantle interaction.........................................37 4.2 Non-equilibrium ocean tide....................................38 4.3 Mantle anelasticity...............................................43 4.4 Uncertainties of κ estimates..................................48 4.5 18.6-year lunar tide in ΔLOD..................................50 4.6 Fortnightly tide Mf & IERS model............................52 4.7 Remnant signals at seasonal and decadal band.......54 Chapter5 Conclusions.................................................56 References.................................................................60 Appendix A The Love numbers h, k and l.......................70 Appendix B Dynamics of the Earth's rotation..................71 Appendix C Tidal potential............................................76 | |
| dc.language.iso | en | |
| dc.subject | 海潮 | zh_TW |
| dc.subject | 固體潮 | zh_TW |
| dc.subject | 長週期潮汐 | zh_TW |
| dc.subject | 日長量 | zh_TW |
| dc.subject | 地球自轉 | zh_TW |
| dc.subject | Earth’s rotation | en |
| dc.subject | Length-of-day (LOD) | en |
| dc.subject | Ocean tides | en |
| dc.subject | Solid Earth tides | en |
| dc.title | 分析長週期潮汐對地球日長量變化的影響 | zh_TW |
| dc.title | Determination of the Earth’s Zonal Response in Length-of-day Variation to the Long-period Tides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃金維,葉大綱,袁林果 | |
| dc.subject.keyword | 地球自轉,日長量,長週期潮汐,海潮,固體潮, | zh_TW |
| dc.subject.keyword | Earth’s rotation,Length-of-day (LOD),Ocean tides,Solid Earth tides, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
