Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韋文誠
dc.contributor.authorTing-Yu Linen
dc.contributor.author林廷諭zh_TW
dc.date.accessioned2021-06-16T23:06:53Z-
dc.date.available2014-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-06
dc.identifier.citation1R. M. Ormerod, 'Solid oxide fuel cells,' Chem Soc Rev, 32[1] 17-28 (2003).
2E. Ivers-Tiffee, A. Weber, and D. Herbstritt, 'Materials and technologies for
SOFC-components,' J Eur Ceram Soc, 21[10-11] 1805-11 (2001).
3S. F. Wang, Y. R. Wang, C. T. Yeh, Y. F. Hsu, S. D. Chyou, and W. T. Lee, 'Effects of
bi-layer La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-d)-based cathodes on characteristics of
intermediate temperature solid oxide fuel cells,' J Power Sources, 196[3] 977-87
(2011).
4D. Waller, J. A. Lane, J. A. Kilner, and B. C. H. Steele, 'The effect of thermal
treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes,'
Solid State Ionics, 86-8 767-72 (1996).
5A. Petric, P. Huang, and F. Tietz, 'Evaluation of La-Sr-Co-Fe-O perovskites for solid
oxide fuel cells and gas separation membranes,' Solid State Ionics, 135[1-4] 719-25
(2000).
6Y. Teraoka, H. M. Zhang, K. Okamoto, and N. Yamazoe, 'Mixed ionic-electronic
conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides,' Mater Res Bull,
23[1] 51-58 (1988).
7L. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger-Wilckens, 'Worldwide
SOFC technology overview and benchmark,' Int J Appl Ceram Tec, 2[6] 482-92
(2005).
8L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin,
'Structure and Electrical-Properties of La1-xSrxCo1-yFeyO3 .2. The System
La1-xSrxCo0.2Fe0.8O3,' Solid State Ionics, 76[3-4] 273-83 (1995).
9O. Yamamoto, 'Solid oxide fuel cells: fundamental aspects and prospects,'
Electrochim Acta, 45[15-16] 2423-35 (2000).
10E. V. Tsipis and V. V. Kharton, 'Electrode materials and reaction mechanisms in
solid oxide fuel cells: a brief review,' J Solid State Electr, 12[11] 1367-91 (2008).
11J. M. W. a. I. Bransky, 'Electrical Conductivity in Ceramics and Glass, ed. N.M.
Tallan.' in., 1971.
12L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, andS. R. Sehlin,
'Structure and Electrical-Properties of La1-xSrxCo1-yFeyO3 .1. The System
La0.8Sr0.2Co1-yFeyO3,' Solid State Ionics, 76[3-4] 259-71 (1995).
13V. Dusastre and J. A. Kilner, 'Optimisation of composite cathodes for intermediate
temperature SOFC applications,' Solid State Ionics, 126[1-2] 163-74 (1999).
14E. P. Murray, M. J. Sever, and S. A. Barnett, 'Electrochemical performance of
(La,Sr)(Co,Fe)O-3-(Ce,Gd)O-3 composite cathodes,' Solid State Ionics, 148[1-2]
27-34 (2002).
15T. Suzuki, P. Jasinski, H. U. Anderson, and F. Dogan, 'Role of composite cathodes
in single chamber SOFC,' J Electrochem Soc, 151[10] A1678-A82 (2004).
16L. Sun, M. Favreau-Perreault, and G. Brisard, 'Synthesis and electrochemical
characterization of pure and composite cathode materials for solid oxide fuel cells,' J
New Mat Electr Sys, 7[4] 247-55 (2004).
17J. D. Zhang, Y. Ji, H. B. Gao, T. M. He, and J. Liu, 'Composite cathode
La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3)-Sm(0.1)Ce(0.9)O(1.95)-Ag for
intermediate-temperature solid oxide fuel cells,' J Alloy Compd, 395[1-2] 322-25
(2005).
18H. J. Hwang, M. B. Ji-Woong, L. A. Seunghun, and E. A. Lee, 'Electrochemical
performance of LSCF-based composite cathodes for intermediate temperature
SOFCs,' J Power Sources, 145[2] 243-48 (2005).
19W. H. Kim, H. S. Song, J. Moon, and H. W. Lee, 'Intermediate temperature solid
oxide fuel cell using (La,Sr)(Co,Fe)O-3-based cathodes,' Solid State Ionics,
177[35-36] 3211-16 (2006).
20F. Qiang, K. N. Sun, N. Q. Zhang, X. D. Zhu, S. R. Le, and D. R. Zhou,
'Characterization of electrical properties of GDC doped A-site deficient LSCF based
composite cathode using impedance spectroscopy,' J Power Sources, 168[2] 338-45
(2007).
21C. J. Fu, K. N. Sun, N. Q. Zhang, X. B. Chen, and D. R. Zhou, 'Electrochemical
characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC,'
Electrochim Acta, 52[13] 4589-94 (2007).
22Y. Lin and S. A. Barnett,
'La0.9Sr0.1Ga0.8Mg0.2O3-d-La0.6Sr0.4Co0.2Fe0.8O3-t composite cathodes
for intermediate-temperature solid oxide fuel cells,' Solid State Ionics, 179[11-12]
420-27 (2008).
23C. Jin, J. Liu, W. M. Guo, and Y. H. Zhang, 'Electrochemical characteristics of an
La0.6Sr0.4Co0.2Fe0.8O3-La0.8Sr0.2MnO3 multi-layer composite cathode for
intermediate-temperature solid oxide fuel cells,' J Power Sources, 183[2] 506-11
(2008).
24J. Chen, F. L. Liang, L. N. Liu, S. P. Jiang, B. Chi, J. Pu, and J. Li, 'Nano-structured
(La, Sr)(Co, Fe)O(3)+YSZ composite cathodes for intermediate temperature solid
oxide fuel cells,' J Power Sources, 183[2] 586-89 (2008).
25Y. J. Leng, S. H. Chan, and Q. L. Liu, 'Development of LSCF-GDC composite
cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte,'
Int J Hydrogen Energ, 33[14] 3808-17 (2008).
26S. Lee, H. S. Song, S. H. Hyun, J. Kim, and J. Moon, 'LSCF-SDC core-shell
high-performance durable composite cathode,' J Power Sources, 195[1] 118-23
(2010).
27Y. Sakitou, A. Hirano, N. Imanishi, Y. Takeda, Y. Liu, and M. Mori,
'La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3)-Ag composite cathode for
intermediate-temperature solid oxide fuel cells,' J Fuel Cell Sci Tech, 5[3] (2008).
28Z. Liu, M.-F. Han, and W.-T. Miao, 'Preparation and characterization of graded
cathode La0.6Sr0.4Co0.2Fe0.8O3−δ,' J Power Sources, 173[2] 837-41 (2007).
29H. A. Hamedani, M. Baniassadi, M. Khaleel, X. Sun, S. Ahzi, D. Ruch, and H.
Garmestani, 'Microstructure, property and processing relation in gradient porous
cathode of solid oxide fuel cells using statistical continuum mechanics,' J Power
Sources, 196[15] 6325-31 (2011).
30N. Zhang, J. Li, D. Ni, and K. Sun, 'Preparation of honeycomb porous
La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.2Ce0.8O2−δ composite cathodes by breath figures
method for solid oxide fuel cells,' Applied Surface Science, 258[1] 50-57 (2011).
31J. M. Bae and B. C. H. Steele, 'Properties of La0.6Sr0.4Co0.2Fe0.8O3-delta
(LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes
- I. Role of SiO2,' Solid State Ionics, 106[3-4] 247-53 (1998).
32M. Yang, A. Y. Yan, M. Zhang, Z. F. Hou, Y. L. Dong, and M. J. Cheng, 'Effects of
GDC interlayer on performance of low-temperature SOFCs,' J Power Sources, 175[1]
345-52 (2008).
33H. G. Jung, Y. K. Sun, H. Y. Jung, J. S. Park, H. R. Kim, G. H. Kim, H. W. Lee, and
J. H. Lee, 'Investigation of anode-supported SOFC with cobalt-containing cathode
and GDC interlayer,' Solid State Ionics, 179[27-32] 1535-39 (2008).
34C. Torres-Garibay and D. Kovar, 'Perovskite-related intergrowth cathode materials
with thin YSZ electrolytes for intermediate temperature solid oxide fuel cells,' J
Power Sources, 192[2] 396-99 (2009).
35A. J. Darbandi and H. Hahn, 'Nanoparticulate cathode thin films with high
electrochemical activity for low temperature SOFC applications,' Solid State Ionics,
180[26-27] 1379-87 (2009).
36Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, and H. Uchida,
'Polarization properties of La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3)-based double layer-type
oxygen electrodes for reversible SOFCs,' Electrochim Acta, 54[12] 3309-15 (2009).
37Z. G. Lu, X. D. Zhou, J. Templeton, and J. W. Stevenson, 'Electrochemical
Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the
Ohmic Loss in Anode-Supported Button Cells with LSM or LSCF Cathodes,' J
Electrochem Soc, 157[6] B964-B69 (2010).
38Z. G. Lu, J. Hardy, J. Templeton, and J. Stevenson, 'New insights in the polarization
resistance of anode-supported solid oxide fuel cells with
La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3) cathodes,' J Power Sources, 196[1] 39-45 (2011).
39D. Marinha, J. Hayd, L. Dessemond, E. Ivers-Tiffee, and E. Djurado, 'Performance
of (La,Sr)(Co,Fe)O(3-x) double-layer cathode films for intermediate temperature solid
oxide fuel cell,' J Power Sources, 196[11] 5084-90 (2011).
40P. Plonczak, M. Joost, J. Hjelm, M. Sogaard, M. Lundberg, and P. V. Hendriksen, 'A
high performance ceria based interdiffusion barrier layer prepared by spin-coating,' J
Power Sources, 196[3] 1156-62 (2011).
41J. W. Yun, J. Han, S. P. Yoon, S. Park, H. S. Kim, and S. W. Nam, 'Ce0.8Gd0.2O2
modification on La0.6Sr0.4Co0.2Fe0.8O3 cathode for improving a cell performance
in intermediate temperature solid oxide fuel cells,' Journal of Industrial and
Engineering Chemistry, 17[3] 439-44 (2011).
42C. Endler-Schuck, A. Weber, E. Ivers-Tiffee, U. Guntow, J. Ernst, and J. r. Ruska,
'Nanoscale Gd-Doped CeO[sub 2] Buffer Layer for a High Performance Solid Oxide
Fuel Cell,' J Fuel Cell Sci Tech, 8[4] 041001 (2011).
43N. S. K. Gunda, H.-W. Choi, A. Berson, B. Kenney, K. Karan, J. G. Pharoah, and S.
K. Mitra, 'Focused ion beam-scanning electron microscopy on solid-oxide fuel-cell
electrode: Image analysis and computing effective transport properties,' J Power
Sources, 196[7] 3592-603 (2011).
44K. Matsuzaki, N. Shikazono, and N. Kasagi, 'Three-dimensional numerical analysis
of mixed ionic and electronic conducting cathode reconstructed by focused ion beam
scanning electron microscope,' J Power Sources, 196[6] 3073-82 (2011).
45B. Ruger, A. Weber, and E. Ivers-Tiffee, '3D-Modelling and Performance
Evaluation of Mixed Conducting (MIEC) Cathodes,' Ecs Transactions, 7[1] 2065-74
(2007).
46S. B. Adler, J. A. Lane, andB. C. H. Steele, 'Electrode kinetics of porous
mixed-conducting oxygen electrodes,' J Electrochem Soc, 143[11] 3554-64 (1996).
47S. Jiang, 'Effect of contact between electrode and current collector on the
performance of solid oxide fuel cells,' solid state ionics, 160[1-2] 15-26 (2003).
48H. Iwai, A. Kuroyanagi, M. Saito, A. Konno, H. Yoshida, T. Yamada, and S.
Nishiwaki, 'Power generation enhancement of solid oxide fuel cell by cathode–
electrolyte interface modification in mesoscale assisted by level set-based
optimization calculation,' J Power Sources, 196[7] 3485-95 (2011).
49T. J. Huang and C. L. Chou, 'Electrochemical CO2 reduction with power generation
in SOFCs with Cu-added LSCF-GDC cathode,' Electrochem Commun, 11[7] 1464-67
(2009).
50L. Adijanto, R. Kungas, F. Bidrawn, R. J. Gorte, and J. M. Vohs, 'Stability and
performance of infiltrated La0.8Sr0.2CoxFe1−xO3 electrodes with and without
Sm0.2Ce0.8O1.9 interlayers,' J Power Sources, 196[14] 5797-802 (2011).
51Y. Gong, W. Ji, L. Zhang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, 'Low
temperature deposited (Ce,Gd)O2−x interlayer for La0.6Sr0.4Co0.2Fe0.8O3 cathode
based solid oxide fuel cell,' J Power Sources, 196[5] 2768-72 (2011).
52J. H. Kim, Y. M. Park, and H. Kim, 'Nano-structured cathodes based on
La0.6Sr0.4Co0.2Fe0.8O3−δ for solid oxide fuel cells,' J Power Sources, 196[7]
3544-47 (2011).
53Y. H. Liu, B. Chi, J. Pu, and J. Li, 'Performance degradation of impregnated
La0.6Sr0.4Co0.2Fe0.8O3+Y2O3 stabilized ZrO2 composite cathodes of intermediate
temperature solid oxide fuel cells,' Int J Hydrogen Energ, 37[5] 4388-93 (2012).
54Z. Shao, W. Zhou, and Z. Zhu, 'Advanced synthesis of materials for
intermediate-temperature solid oxide fuel cells,' Progress in Materials Science, 57[4]
804-74 (2012).
55S. G. Li, W. Q. Jin, N. P. Xu, and J. Shi, 'Synthesis and oxygen permeation
properties of La0.2Sr0.8Co0.2Fe0.8O3-d membranes,' Solid State Ionics, 124[1-2] 161-70
(1999).
56R. A. Richardson, R. M. Ormerod, and J. W. Cotton, 'Influence of synthesis route on
the powder properties of a perovskite-type oxide,' Ionics, 9[1-2] 77-82 (2003).
57R. A. Richardson, J. W. Cotton, and R. Mark Ormerod, 'Influence of synthesis route
on the properties of doped lanthanum cobaltite and its performance as an
electrochemical reactor for the partial oxidation of natural gas,' Dalton
Transactions[19] 3110 (2004).
58M. P. Pechini, 'Method of preparing lead and alkaline earth titanates and niobates
and coating method using the same to form a capacitor.' in U.S patent, Vol. 3330697.
1967.
59Q. Xu, D. P. Huang, W. Chen, J. H. Lee, H. Wang, and R. Z. Yuan, 'Citrate method
synthesis, characterization and mixed electronic-ionic conduction properties of
La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type complex oxides,' Scripta Mater, 50[1]
165-70 (2004).
60B. A. Fan and X. L. Liu, 'A-deficit LSCF for intermediate temperature solid oxide
fuel cells,' Solid State Ionics, 180[14-16] 973-77 (2009).
61Z. Wu, W. Zhou, W. Jin, and N. Xu, 'Effect of pH on synthesis and properties of
perovskite oxide via a citrate process,' AIChE Journal, 52[2] 769-76 (2006).
62J. M. Ralph, C. Rossignol, and R. Kumar, 'Cathode materials for
reduced-temperature SOFCs,' J Electrochem Soc, 150[11] A1518-A22 (2003).
63A. Dutta, J. Mukhopadhyay, and R. N. Basu, 'Combustion synthesis and
characterization of LSCF-based materials as cathode of intermediate temperature
solid oxide fuel cells,' J Eur Ceram Soc, 29[10] 2003-11 (2009).
64Q. Xu, D. P. Huang, W. Chen, F. Zhang, and B. T. Wang, 'Structure, electrical
conducting and thermal expansion properties of Ln(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3)
(Ln = La, Pr, Nd, Sm) pprovskite-type complex oxides,' J Alloy Compd, 429[1-2]
34-39 (2007).
65K. Zhao, Q. Xu, D. P. Huang, M. Chen, and B. H. Kim, 'Microstructure and
electrode properties of La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-delta) spin-coated on
Ce(0.8)Sm(0.2)O(2-delta) electrolyte,' Ionics, 17[3] 247-54 (2011).
66L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J.
Exarhos, 'Glycine Nitrate Combustion Synthesis of Oxide Ceramic Powders,' Mater
Lett, 10[1-2] 6-12 (1990).
67J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, 'Reactive Ceria Nanopowders via
Carbonate Precipitation,' J Am Ceram Soc, 85[9] 2376-78 (2002).
68A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, 'Carbonate co-precipitation of
Gd2O3-doped CeO2 solid solution nano-particles,' Mat Sci Eng a-Struct, 383[2]
229-34 (2004).
69S.-Y. Yao and Z.-H. Xie, 'Deagglomeration treatment in the synthesis of doped-ceria
nanoparticles via coprecipitation route,' Journal of Materials Processing Technology,
186[1-3] 54-59 (2007).
70J. P. Liang, Q. S. Zhu, Z. H. Xie, W. L. Huang, and C. Q. Hu, 'Low-temperature
sintering behaviors of nanosized Ce0.8Gd0.2O1.9 powder synthesized by
co-precipitation combined with supercritical drying,' J Power Sources, 194[2] 640-45
(2009).
71D. H. Prasad, H. R. Kim, J. S. Park, J. W. Son, B. K. Kim, H. W. Lee, and J. H. Lee,
'Superior sinterability of nano-crystalline gadolinium doped ceria powders
synthesized by co-precipitation method,' J Alloy Compd, 495[1] 238-41 (2010).
72D. H. Prasad, J. H. Lee, H. W. Lee, B. K. Kim, and J. S. Park, 'Correlation between
the powder properties and sintering behaviors of nano-crystalline gadolinium-doped
ceria,' J Ceram Process Res, 11[5] 523-26 (2010).
73N. Cioateră, V. Parvulescu, A. Rolle, and R. N. Vannier, 'Enhanced ionic
conductivity of Sm, Gd-doped ceria induced by modification of powder synthesis
procedure,' Ceram Int (2012).
74G. J. D. A. Soler-Illia, M. Jobbagy, R. J. Candal, A. E. Regazzoni, and M. A. Blesa,
'Synthesis of metal oxide particles from aqueous media: The homogeneous
alkalinization method,' J Disper Sci Technol, 19[2-3] 207-28 (1998).
75E. Matijević and W. P. Hsu, 'Preparation and properties of monodispersed colloidal
particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and
cerium(III),' Journal of Colloid and Interface Science, 118[2] 506-23 (1987).
76G. Meng, H. Song, C. Xia, X. Liu, and D. Peng, 'Novel CVD Techniques for Micro-
and IT-SOFC Fabrication,' Fuel Cells, 4[1-2] 48-55 (2004).
77A. M. Sukeshini, R. Cummins, T. L. Reitz, and R. M. Miller, 'Inkjet Printing of
Anode Supported SOFC: Comparison of Slurry Pasted Cathode and Printed Cathode,'
Electrochemical and Solid-State Letters, 12[12] B176 (2009).
78M. Mosiadz, R. I. Tomov, S. C. Hopkins, G. Martin, D. Hardeman, B. Holzapfel,
and B. A. Glowacki, 'Inkjet printing of Ce0.8Gd0.2O2 thin films on Ni-5%W flexible
substrates,' Journal of Sol-Gel Science and Technology, 54[2] 154-64 (2010).
79R. I. Tomov, M. Krauz, J. Jewulski, S. C. Hopkins, J. R. Kluczowski, D. M.
Glowacka, and B. A. Glowacki, 'Direct ceramic inkjet printing of yttria-stabilized
zirconia electrolyte layers for anode-supported solid oxide fuel cells,' J Power
Sources, 195[21] 7160-67 (2010).
80N. Yashiro, T. Usui, and K. Kikuta, 'Application of a thin intermediate cathode layer
prepared by inkjet printing for SOFCs,' J Eur Ceram Soc, 30[10] 2093-98 (2010).
81N. Oishi, Y. Yoo, and I. Davidson, 'Fabrication of Gas Electrodes by Wet Powder
Spraying of Binder-Free Particle Suspensions Using a Pulse Injection Process,' J Am
Ceram Soc, 90[5] 1365-69 (2007).
82K. Wincewicz and J. Cooper, 'Taxonomies of SOFC material and manufacturing
alternatives,' J Power Sources, 140[2] 280-96 (2005).
83J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler, 'Fabrication
of thin electrolytes for second-generation solid oxide fuel cells,' solid state ionics,
131[1–2] 79-96 (2000).
84D. C. Harris, 'Quantitative Chemical Analysis (Fifth Edition),' pp. 74-81. W.H.
Freeman and Company, (2001).
85C.-C. T. Yang, W.-C. J. Wei, and A. Roosen, 'Electrical conductivity and
microstructures of La0.65Sr0.3MnO –8mol% yttria-stabilized zirconia,' Mater Chem
Phys, 81[1] 134-42 (2003).
86A. Sin, Y. Dubitsky, A. Zaopo, A. S. Arico, L. Gullo, D. La Rosa, S. Siracusano, V.
Antonucci, C. Oliva, and O. Ballabio, 'Preparation and sintering of
Ce1−xGdxO2−x/2 nanopowders and their electrochemical and EPR characterization,'
solid state ionics, 175[1–4] 361-66 (2004).
87S. B. Adler, 'Factors governing oxygen reduction in solid oxide fuel cell cathodes,'
Chem Rev, 104[10] 4791-843 (2004).
88A. Hara, Y. Hirata, S. Sameshima, N. Matsunaga, and T. Horita, 'Grain size
dependence of electrical properties of Gd-doped ceria,' J Ceram Soc Jpn, 116[1350]
291-97 (2008).
89J. H. Kim and H. Kim, 'Ce0.9Gd0.1O1.95 supported La0.6Sr0.4Co0.2Fe0.8O3−δ
cathodes for solid oxide fuel cells,' Ceram Int, 38[6] 4669-75 (2012).
90M. Zhang, M. Yang, Z. F. Hou, Y. L. Dong, and M. J. Cheng, 'A bi-layered
composite cathode of La0.8Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3-La0.4Ce0.6O1.8
for IT-SOFCs,' Electrochim Acta, 53[15] 4998-5006 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64907-
dc.description.abstract本研究,選擇數種複合陰極材料,進行多層半電池(陰極/電解質)製備與介面電阻與極化電阻之分析,再進一步製備出全電池,測量其電能輸出。 電極材料利用共析出法,製備出不同粒徑大小之氧化釓添加氧化铈 (GDC) 球型粉體。另外,利用Pechini法製備GDC及LSCF粉體,以做為阻隔層,在鑭鍶鈷鐵陰極中,加入78nm~2.5um GDC粉體,以降低其陰極極化阻抗及防止晶粒粗化。在陰極複合材使用的則是鑭鍶鈷鐵(LSCF6428),透過兩種合成法固態反應法與Pechini法均可成功合成高表面積出單相且成分均一之粉體。
最後,利用旋鍍法(spin coating) 製備出不同微結構之半電池,進行交流阻抗(AC-impedance)分析,透過單層至多層之陰極結構解析出各層之間之介面極化阻抗與接觸電阻。並使用氧化鎳/氧化鋯(NiO/YSZ)及四層陰極結構製備出單一陽極支撐全電池,其I-V量測結果約為362 mW/cm2。
zh_TW
dc.description.abstractThis study, select the several composite cathode materials for multiple layered half-cell (cathode / electrolyte) fabrication and precede analysis of the interface resistance and polarization resistance, and then further fabricated a full single cell, measuring power output. Electrode material Gd2O3 doped cerium spherical powder with different particle sizes were synthesized by co-precipitation method, preparation of, add of cerium oxide (GDC). In addition, by using the Pechini method to synthesize GDC and LSCF powder as the barrier layer. With the addition of 78nm ~ 2.5 um GDC powder in the lanthanum strontium cobalt iron oxide (LSCF6428) cathode to reduce the cathodic polarization resistance and prevent the grain coarsening. The lanthanum strontium cobalt iron oxide (LSCF6428) was used for composite cathode material, the powder can be successfully synthesized with high surface area and with single phase and homogeneous composition by solid-state reaction method and the Pechini method.
Finally, the half-cells fabricated by spin coating with different microstructure were taken in to measurement of AC-impedance. The interface polarization resistance and contact resistance were analyzed by the half-cells with single layer to multi-layer cathode structure. The optimized four layered cathode microstructure was also applied with the NiO/YSZ as anode material into the anode support single cell for I-V test, and the result of power density was 362 mW/cm2
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:06:53Z (GMT). No. of bitstreams: 1
ntu-101-R99527048-1.pdf: 9025008 bytes, checksum: 787c0ae113efe1a5c0cc543d2f22d92b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
摘要………………………………………………………….………………………III
Abstract IV
List of Figures VIII
List of Tables XII
Chapter 1 Introduction……………………………………………………………....1
Chapter 2 Literature Review………………………………………………………...4
2.1 Cathode Materials for IT-SOFCs……………………………………………...4
2.1.1 (LaSr)(CoFe)O3 Cathode Material……………………………………4
2.1.2 (LaSr)(CoFe)O3-Based Composite Cathode……………………….....7
2.2 Synthesis Method for Composite Cathode………………………………......25
2.2.1 Synthesis of LSCF Powder…………………………………………...25
2.2.2 Synthesis of GDC Powder……………………………………………29
2.3 Processing Techniques of Thin Layer………………………………………..34
Chapter 3 Experimental Procedure………………………………………………..36
3.1 Materials…………….……………………..……………………………….…36
3.2 Fabrication of Cathode Powders……….........................................................37
3.2.1 Solid Phase Synthesis……………………………………………….37
3.2.2 Pechini Method……………………………………………………….38
3.3 Synthesis of Doped Ceria Powders…………………………………………38
3.3.1 Co-precipitation Route…………………………………………….....38
3.3.2 Pechini Method……………………………………………………….39
3.4 Half/Single Cell Fabrication……………………………………………….....40
3.4.1 Fabrication of Dense YSZ and GDC Substrates…………………....40
3.4.2 Cathode Thin Film…………………………………………………....40
3.5 Characterization……………………………………………………………....41
3.5.1 X-ray Diffraction……………………………………………………...41
3.5.2 Particle Size Measurement……………………………………….......42
3.5.3 BET Specific Surface Area Analysis………………………………....42
3.5.4 Thermal Expansion Analysis (TMA)………………………………..43
3.5.5 Microstructural Analysis……………………….………………….....43
3.5.6 Composition analysis (EDS)………………………………………….44
3.5.7 Electrical Conductivity Measurement………………………………44
3.5.8 EIS Analysis (AC-impedance)………………………………………..45
3.6 Single Cell Test………………………………………………………………...46
Chapter 4 Results………………………………………………………………….58
4.1 Properties of Synthesized Powders……………………………………….....58
4.1.1 Quantitative Analysis of Composition………………………….........58
4.1.2 Phase Identification………………………………………………......59
4.1.3 Reduction of Surface Area…………………………………………...59
4.1.4 Microstructure Observation……………………...………………….60
4.1.5 Sintering Behavior………………………………………………….61
4.1.6 Thermal Expansion Analysis………………………………………...61
4.2 Fabrication and Properties of Half-Cells………………………………….76
4.2.1 Properties of Slurries………………………………………………...76
4.2.2 Cathode Film by Spin Coating………………………………………77
4.2.3 Microstructure Analysis of LSCF-GDC Composite Cathode ….....78
4.3 Cell test………………………………………………………………………..96
4.3.1 Electrical Property of LSCF……………………….………………...96
4.3.2 EIS Spectrum Analysis of Cells……………………………………...96
4.3.3 IV Test………………………………………………………………....99
Chapter 5 Discussions………………………………………………………….….116
5.1 Powder Properties…………………………………………………………...116
5.1.1 LSCF…………………………………………………………….…116
5.1.2 GDC…………………………………………………………….……118
5.2 Electrochemical Properties………………………………………….………122
5.2.1 Contact Resistance……………………………………………….....123
5.2.2 Polarization Resistance……………………………………………125
Chapter 6 Conclusions…………………………………………………………….130 Appendix……………………………………………...……………………………133
References………………………………………………………………………..135
dc.language.isoen
dc.subject固態電解質燃料電池zh_TW
dc.subject接觸電阻zh_TW
dc.subject氧化釓zh_TW
dc.subject氧化&#38088zh_TW
dc.subject鑭鍶鈷鐵zh_TW
dc.subject共析出法zh_TW
dc.subjectPechini 法zh_TW
dc.subject複合陰極zh_TW
dc.subject極化阻抗zh_TW
dc.subjectpolarization resistanceen
dc.subjectGDCen
dc.subjectLSCFen
dc.subjectco-precipitation routeen
dc.subjectPechini methoden
dc.subjectcomposite cathodeen
dc.subjectSOFCen
dc.subjectcontact resistanceen
dc.title中溫固態氧化物燃料電池鑭鍶鈷鐵基複合陰極層之分析及電性研究zh_TW
dc.titleCharacterization and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-based composite cathode for IT-SOFCsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王錫福,郭俞麟
dc.subject.keyword固態電解質燃料電池,氧化釓,氧化&#38088,鑭鍶鈷鐵,共析出法,Pechini 法,複合陰極,極化阻抗,接觸電阻,zh_TW
dc.subject.keywordSOFC,GDC,LSCF,co-precipitation route,Pechini method,composite cathode,polarization resistance,contact resistance,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2012-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved