請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64898
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李克強 | |
dc.contributor.author | Tung-Ting Lai | en |
dc.contributor.author | 賴東廷 | zh_TW |
dc.date.accessioned | 2021-06-16T23:06:21Z | - |
dc.date.available | 2013-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-06 | |
dc.identifier.citation | 1. Liu, B.T. and J.P. Hsu, The stability of a salt-free colloidal dispersion. Journal of Chemical Physics, 2008. 128(10).
2. Debye, P. and A.M. Bueche, Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. Journal of Chemical Physics, 1948. 16(6): p. 573-579. 3. Happel, J., Viscosity of suspensions of uniform spheres. Journal of Applied Physics, 1957. 28(11): p. 1288-1292. 4. Pavlov, G.M., et al., Determination of intrinsic viscosity of polyelectrolytes in salt-free solutions. Russian Journal of Applied Chemistry, 2006. 79(9): p. 1407-1412. 5. Longworth, R. and J.J. Hermans, Conductivity of solutions of the potassium salts of carboxymethylcellulose and sulfonated polystyrene in the presence of potassium chloride. Journal of Polymer Science, 1957. 26(112): p. 47-55. 6. Vink, H., Electrolytic conductivity of poly-electrolyte solutions. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1982. 183(9): p. 2273-2283. 7. Colby, R.H., et al., Polyelectrolyte conductivity. Journal of Polymer Science Part B-Polymer Physics, 1997. 35(17): p. 2951-2960. 8. Carrique, F., et al., Influence of cell-model boundary conditions on the conductivity and electrophoretic mobility of concentrated suspensions. Advances in Colloid and Interface Science, 2005. 118(1-3): p. 43-50. 9. Cuquejo, J., et al., Numerical and analytical studies of the electrical 10. Fuoss, R.M., Polyelectrolytes. Science, 1948. 108(2812): p. 545-550. 11. Overbeek, J.T.G., Polyelectrolytes, past, present and future. Pure and Applied Chemistry, 1976. 46(2-4): p. 91-101. 12. Oosawa, F., Polyelectrolytes, 1971. M. Dekker. 13. Radeva, T., ed. Physical Chemistry of Polyelectrolytes. surfactant science series, 2001. 99. 14. Delgado, A.V., ed. Interfacial electrokinetics and electrophoresis. surfactant science series, 2002. 106. Marcel Dekker, Inc.: New York. 15. Teorell, T., Transport processes and electrical phenomena in ionic membranes. Progress in Biophysics and Biophysical Chemistry, 1953. 3: p. 305-369. 16. Ohki, S., Rectification by a double membrane. Journal of the Physical Society of Japan, 1965. 20(9): p. 1674-1685. 17. Brinkman, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research Section a-Mechanics Heat Chemical Engineering Mathematical Methods, 1947. 1 (1) : p. 27-34. 18. Ohshima, H.; Kondo, T., Electrostatic double-layer interaction between 2 charged ion-penetrable spheres - an exactly solvable model. Journal of Colloid and Interface Science, 1993. 155 (2) : p. 499-505. 19. Ohshima, H.; Kondo, T., Electrostatic interaction of an ion-penetrable sphere with a hard plate - contribution of image interaction. Journal of Colloid and Interface Science, 1993. 157(2) : p. 504-508. 20. Hsu, J. P.; Liu, B. T., Electrical interaction of a system containing arbitrary shaped, ion-penetrable charged particles. Journal of Physical Chemistry B, 1998. 102(20) : p. 3892-3896. 21. Teorell, T., Transport processes and electrical phenomena in ionic membranes. Progress in Biophysics and Biophysical Chemistry, 1953. 3: p. 305-369. 22. Ohki, S., Rectification by a double membrane. Journal of the Physical Society of Japan, 1965. 20(9): p. 1674-&. 23. Mauro, A., Space charge regions in fixed charge membranes and associated property of capacitance. Biophysical Journal, 1962. 2(2): p. 179-&. 24 John L. Anderson, D. C. Prieve. Diffusiophoresis of latex particles in electrolyte gradients.Langmuir, 1988, 4 (2): p. 396–406. 25. Dukhin, S.S. and B.V. Deryagin, eds. Surface and Colloid Science. Vol. 7. 1974, Wiley: New York. 26. Anderson, J.L., M.E. Lowell, and D.C. Prieve, Motion of a particle generated by chemical gradients .1. Non-electrolytes. Journal of fluid mechanics, 1982(117): p. 101-121. 27. Prieve, D.C., et al., Motion of a particle generated by chemical gradients .2. Electrolytes. Journal of Fluid Mechanics, 1984. 148(NOV): p. 247-269. 28. Prieve, D.C. and R. Roman, Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. Journal of the Chemical Society-Faraday Transactions Ii, 1987. 83: p. 1287-1306. 29. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society-Faraday Transactions II, 1978. 74: p. 1607-1626. 30. Pawar, Y., Y.E. Solomentsev, and J.L. Anderson, Polarization effects on diffusiophoresis in electrolyte gradients. Journal of Colloid and Interface Science, 1993. 155(2): p. 488-498. 31. Lou, J., Y.Y. He, and E. Lee, Diffusiophoresis of concentrated suspensions of spherical particles with identical ionic diffusion velocities. Journal of Colloid and Interface Science, 2006. 299(1): p. 443-451. 32. Hsu, J.P., et al., Diffusiophoresis of concentrated suspensions of spherical particles with distinct ionic diffusion velocities. Journal of Physical Chemistry B, 2007. 111(10): p. 2533-2539. 33. Wei, Y.K. and H.J. Keh, Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. Journal of Colloid and Interface Science, 2004. 269(1): p. 240-250. 34. B V Deryagin, S S Dukhin and N N Rulev. Kinetic Theory of the Flotation of Small Particles. 35. Bakanov, S.P. and V.I. Roldughin, Diffusiophoresis in gases. Aerosol Science and Technology, 1987(7): p. 249-255. 36. Pilat, M.J. and A. Prem, Effect of diffusiophoresis and thermophoresis on overall particle collection efficiency of spray droplet scrubbers. Journal of the Air Pollution Control Association, 1977(27): p. 982-988. 37. Jaworek, A., et al., Wet Electroscrubbers for State of the Art Gas Cleaning. Environmental Science and Technology, 2006(40): p. 6197-6207. 38. Steinbrecher, L. and Hall, W.S., Bri. Pat. 1,130,687 (1967); F. Pat. 1,546,772 (1968); U.S. Pat. 3,585,084 (1971) 39. Prieve, D.C. and Smith, R.E., Chem. Eng. Sci,1982. 37(8), 1213 40. Deryagin, B.V., Dukhin, S.S. and Korotkova, A.A., Kolloidn. Zh, 1961. 23(53). 41. Deryagin, B.V., Dukhin, S.S. and Korotkova, A.A., Kolloidn. Zh, 1978. 40(643). 42. Derjaguin, B.V. and Dukhin, S.S., Surface and Colloid Science, 1975. (Edited by Matijevic E.) 7(273). 43. Mallouk, T. E. and Sen, A., How to Build Nanotech Motors. Scitntific American Magazine, 2009. 44. Dror, I., Amitay, T., Yaron, B., and Berkowitz, B., Salt-pump mechanism for contaminant intrusion into coastal aquifers. Science, 2003. 45. Abecassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A., and Bocquet, L., Boosting migration of large particles by solute contrasts. Nature Materials, 2008. 7: p. 785-789. 46. Prieve, D. C., Particle transport: Salt and migrate. Nature Materials, 2008. 7: p.769-770. 47. Qian, S. Z., Das, B., and Luo, X. B., Diffusioosmotic flows in slit nanochannels. Journal of Colloid and Interface Science, 2007. 315: p. 721-730 48. Happel, J. and Brenner, H., “Low-Reynolds Number Hydrodynamics”, Martinus Nijhoff, 1983. 49. James Lou, Chun-Yu Shih, Eric Lee, Diffusiophoresis of a spherical particle normal to an air-water interface, J. Colloid Interface Sci, 2009. 331: p. 227-235. 50. James Lou, Eric Lee, Diffusiophoresis of a Spherical Particle Normal to a Plane, J. Phys. Chem. C, 2008. 7(112) : p 2584-2592. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64898 | - |
dc.description.abstract | 本論文探討電解質溶液中各種邊界效應對多孔膠體粒子擴散泳現象之影響。為了描述多孔粒子系統,我們利用雙球座標系統進行多區聯解系統的非線性電場及流場方程式,再利用牛頓-拉福生疊代法求得系統之穩態解。並進一步探討加入平面邊界條件後,極化效應、電雙層重疊效應對多孔膠體粒子擴散泳動度之影響。
研究結果發現,隨著電荷密度變大,化學泳的驅動力會增加,並使多孔粒子的擴散泳動度加快;而當電解質溶液裡的陰陽離子擴散係數不同時,電泳項的驅動力就會出現,當多孔粒子帶正電時,電泳項的驅動力方向會與化學泳項相反,且略大於化學泳項,讓多孔粒子會往負的方向移動,此時的擴散泳動度為此兩項競爭的結果。而電雙層厚度也會影響擴散泳動度,在電雙層厚度約等於粒子半徑時,受流動項的極化效應影響會使擴散泳動度降低最多。而當多孔粒子的摩擦係數愈高時,也會導致擴散泳動度愈慢。 當多孔粒子碰到平面邊界條件如金屬導體平板或是氣液交界面時,多孔粒子的電雙層皆會受到影響,在電雙層還未與平面接觸時,平面邊界條件會擠壓電雙層,使其濃度梯度增加,並讓化學泳項的驅動力變大。而當電雙層接觸到平面邊界條件之後,平板與氣液交界面兩種情形下濃度梯度造成的化學泳項驅動力才會有差異,導致擴散泳動度也會不同。在平板時,由於受到不可滑動的流力邊界條件影響,離子會被限制住在平板以及粒子之間,所以濃度梯度會變得較大,化學泳驅動力以及擴散泳動度便會增加;氣液交界面時,離子在平面上並無受限,可自由移動,因此並無平板時的擠壓作用,當電雙層觸碰到氣液交界面後,會被平面干擾導致濃度梯度無法像單一粒子時完整建立,導致擴散泳動度因此下降。 | zh_TW |
dc.description.abstract | Diffusiophoretic behavior of porous colloidal particles subject to a electrolyte concentration gradient is investigated theoretically for arbitrary double layer thickness and surface potential. The governing general electrokinetic equations are put in terms of bipolar spherical coordinates, and solved numerically with a pseudo-spectral method based on Chebyshev polynomial. Without any assumption about particle surface potential or double layer thickness, the effects of key factors are examined such as the effect of double layer polarization, double layer overlapping, and boundary effect.
We find that the fixed charge density of the porous particle will increase the chemiphoresis and diffusiophoresis. In contrast to the case of identical diffusivity of cations and anions, a local electric field is induced in the present case due to an unbalanced charge distribution between higher and lower concentration regions. Depending upon the direction of this induced electric field, the diffusiophoretic mobility can be larger or smaller than that for the case of identical diffusivity. When the fixed charge density is positive, the direction of electrophoresis will have opposite pattern with chemiphoresis. The competition between chemiphoresis and electrophoresis will result in diffusiophoresis. In the study of a spherical colloidal particle normal to a planar boundary, it is found, among other things, that the presence of a planar boundary results in a local concentration gradient, provided that the double layer does not touch the planar boundary. If it does, however, the diffusiophoretic mobility of the porous particle will exhibit significance differences between planar metal surface and air-water interface. In the condition of planar metal surface, there will be an increase in chemiphoresis and demonstrates an decrease in the state of air-water interface | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:06:21Z (GMT). No. of bitstreams: 1 ntu-101-R99524061-1.pdf: 1004389 bytes, checksum: 8555361a866e206e919c0754bede6ee0 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
摘要. I Abstrct III 目錄. V 圖表目錄 IX 第一章 緒論 1 1.1 多孔膠體粒子 1 1.2 電雙層的極化效應 6 1.3 擴散泳理論文獻回顧 7 1.4 擴散泳的應用 10 1.5 論文架構 12 第二章 理論分析 13 2.1 電動力學主控方程式 13 2.2 平衡態與擾動態 19 2.3 系統描述與基本假設 23 2.4 粒子受力計算 29 2.5 擴散泳動度之計算 30 2.6 系統變數之無因次化 33 2.7 無因次化之主控方程式與其邊界條件 35 第三章 數值方法 39 3.1 正交配位法 39 3.2 空間映射 45 3.3 牛頓-拉福生迭代法 46 3.4 數值積分 49 3.5 數值畸點之處理方式 51 第四章 平板對擴散泳動度的影響 53 4.1 擴散係數及電荷密度的影響 53 4.2 電雙層厚度及電荷密度的影響 58 4.3 摩擦係數的影響 64 4.4 與平板距離的影響 68 第五章 多孔球對自由液面的擴散泳現象 75 5.1 擴散係數及電荷密度的影響 75 5.2 電雙層厚度的影響 78 5.5 摩擦係數的影響 82 5.6 與自由液面距離的影響 86 第六章 結論 95 參考文獻 97 附錄A 座標系統簡介 103 附錄B 連續條件之推導 107 附錄C 自由液面上之力平衡詳細推導 111 附錄D 雙球系統 119 D.1 系統變數之無因次化 120 D.2 無因次化之主控方程式與其邊界條件 122 D.3 雙球間的距離對擴散泳的影響 125 D.4 摩擦係數對擴散泳的影響 127 D.5 電荷密度對擴散泳的影響 128 | |
dc.language.iso | zh-TW | |
dc.title | 邊界效應對多孔膠體粒子擴散泳之影響 | zh_TW |
dc.title | Boundary Effects on Diffusiophoresis Motion of Charged Porous Spheres | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 游佳欣,趙玲 | |
dc.subject.keyword | 擴散泳現象,電動力學現象,多孔粒子,邊界效應,雙球座標,極化效應,電雙層, | zh_TW |
dc.subject.keyword | diffusiophoresis,electrokinetucs,porous particle,bipolar coordinate,polarization,boundary effect,electric double layer, | en |
dc.relation.page | 128 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 980.85 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。