Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳兆勛
dc.contributor.authorWen-Hsiang Chenen
dc.contributor.author陳文祥zh_TW
dc.date.accessioned2021-05-17T09:14:09Z-
dc.date.available2014-08-20
dc.date.available2021-05-17T09:14:09Z-
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation[1]A. B. Smith, C. D. Jones, and E.F. Roberts, “Article Title,” Journal, Publisher, Location, pp. 1-10, Date.
[2]許明發、郭文雄,“奈米碳管科技”,國興出版社,2004 年 1 月。
[3]Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse,“Nanotechnology Basic Science and Emerging Technologies.”,ISBN 986-7688-28-7
[4]Iijima S. Helical microtubules of graphitic carbon.Nature 1991;354:56-58.
[5]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993;363:603-5.
[6]Huang, W., Lin, Y., Taylor, S., Gaillard, J., Rao, A. M., and Sun, Y. P., Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letters 2 (3), 231-234 (2002).
[7]鄧至均,黃彥瑋,馬振基, 奈米碳管之分散及表面官能基化技術. 化工資訊與商情 75, 26-36 (2009).
[8]Kang, Y. and Taton, T. A., Micelle-encapsulated carbon nanotubes: a route to nanotube composites. Journal of the American Chemical Society 125 (19), 5650-5651 (2003).
[9]Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., and Huffman, C. B., Fullerene pipes. Science 280 (5367), 1253 (1998).
[10]Chamla KK. Composite Materials. Springeer-Verlag New York.1987.
[11]]Delmonte J. Technology of Carbon and Graphite Fiber Composites. Van Nostrand Rein hold Co. New York. 1981.
[12]HoneJ. Phonons and thermal properties of carbon nanotubes.Topics in Applied Physics 2001;80:273-86.
[13]Wildoer JWG, Vrnrma LC, Rinzler AG, Smalley Re, Dekker C.Electronic structure of atomically resolved carbon nanotube. Nature 391.59-62.
[14]Saito R,Fujita M,Dresselhaus G, Dresselhaus MS. Electronic structure of chiral
[15]grapheme tubules. Appied Physics Letters 1992;60:2204-6.
[16]Ajayan PM,Stephan O,Colliex C,Trauth D.Aligned Carbon Nanotube Arrays Formed
[17]By Cutting A Polymer Resin-Nanotube Composite. Science 1994;265:1212-4.
[18]Breuer O, Sundararaj U.Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites. Polymer Composites 2004;25:630-45.
[19]Lau KT, Hui D. Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon 2002;40:1605-6.;
[20]Two-phase microfluidics, heat and mass transport in direct methanol fuel cells Author(s): G. Lu & C.-Y. Wang
[21]Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters 1998;73:3842-4.
[22]Sennett M, Welsh E, Wright JB, Li WZ, Wen JG, Ren ZF.Dispersion and alignment of carbon nanotubes in polycarbonate. Applied Physics A 2003;76:111-3.
[23]Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management.Applied Physics Letters 2002;80:2767-9.
[24]Pirlot C, Willems I, Fonesca A, Nagy JB, Delhalle J. Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites. Advanced Engineering Materials 2002;4:109-14.
[25]Kim YA, Hayashi T, Fukai Y, Endo M, Yanagisawa T, Dresselhaus MS. Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chemical Physics Letters 2002;355:279-84.
[26]Tucknott R,Yaliraki SN. Aggregation properties of carbon nanotubes at interfaces.Chemical Physics 2002;281:455-63.
[27]Hirsch A. Functionalization of Single-Walled Carbon Nanotubes. Angewandte Chemie International Edition 2002;281:455-63.
[28]Velasco-Santos C, Martinez AL, Lozada-Cassou M, Alvarez-Castillo A, Castano VM. Chmical functionalization of carbon nanotubes through an organosilane. Nanotechnology 2002;13:495-8.
[29]Bahr JL, Tour JM. Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds. Chmistry of Materials 2001;13:3823-4.
[30]Georgakilas V, Kordatos K, Prato M , Guldi DM, Holzinger M, Hirsch A. Organic Functionalization of Carbon Nanotubes. Journal of the American Chemical Society 2002;124:760-1.
[31]燃料電池 : 原理與應用Fuel cells ; the principles and applications / 衣寶廉編著
[32]燃料電池 : 新世紀能源 / 林昇佃等合著
[33]燃料電池 : 未來的動力 / 賴耀宗譯
[34]H. Dohle, J. Mergel, D. Stolten, J Power Sources 2002, 111, 268
[35]Methanol fuel cell systems : advancing towards commercialization / Dave Edlund
[36]Fuel cell technology handbook / edited by Gregor Hoogers
[37]X. M. Ren, T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J Electrochem Soc 2000, 147, 466
[38]K. D. Kreuer, On the complexity of proton conduction phenomena, Solid state ionics, 136-137, 149-160 (2000)
[39]S. P. Tung and B. J. Hwang, “Synthesis and characterization of xP 2O5 -(100-x)SiO 2 glass electrolytes prepared by accelerated sol-gel process with water/vapor management”, J. Membr. Sci. 241 , 315-323 (2004)
[40]T. Schultz, S. Zhou, and K. Sundmacher, “Review: Current status of and recent developments in the direct methanol fuel cell, Chem. Eng.
[41]邱志豪,聚苯咪唑合成及薄膜性質,元智大學化工系 (2004)
[42]K. Miyatake, Y. Chikashige, M. Watanabe, Macromolecules 2003, 36, 9691.
[43]Y. Yin, J. H. Fang, Y. F. Cui, K. Tanaka, H. Kita, K. Okamoto, Polymer 2003, 44, 4509
[44]J. H. Fang, X. X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules 2002, 35, 9022.
[45]N. W. Li, S. B. Zhang, J. Liu, F. Zhang, Macromolecules 2008, 41, 4165.
[46]S. Xue, G. P. Yin, Eur Polym J 2006, 42, 776.
[47]Y. Kozawa, S. Suzuki, M. Miyayama, T. Okumiya, E. Traversa, Solid State Ionics 2010, 181, 348.
[48]C. J. Zhao, H. D. Lin, M. M. Han, H. Na, J Membrane Sci 2010, 353, 10.
[49]R. Wycisk, J. K. Lee, P. N. Pintauro, J Electrochem Soc 2005, 152, A892.
[50]Wen-Han Pan , S. Jessie Lue Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell W.-H. Pan et al. / Journal of Membrane Science 376 (2011) 225–232
[51]SungjinYun, Hyun guIm, Yusun Heo,Joo heon Kim Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cellsJournal of Membrane Science 380 (2011) 208– 215
[52]Jatindranath Maiti, Nitul Kakati, Seok Hee Lee, Seung Hyun Jee, Young Soo Yoon PVA nano composite membrane for DMFC application Solid State Ionics 201 (2011) 21–26
[53]Yuwei Zhang , Zhiming Cui , Changpeng Liu , Wei Xing , Jiujun Zhang Implantation of Nafion R ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells Journal of Power Sources 194 (2009) 730–736
[54]A.V. Tripkovic, K.D. Popovic, B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Markovic, Methanol electro-oxidation on supported Pt and Pt–Ru catalysts in acid and alkaline solutions, Electrochem. Acta 47 (2002) 3707–3714.
[55]C. Xu, A. Faghri, X.L. Li, Development of a high performance passive vapor-feed
DMFC fed with neat methanol, J. Electrochem. Soc. 157 (2010) B1109–B1117.
[56]B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001)
345–352.
[57]X. Wei, M.Z. Yates, Control of Nafion/poly(vinylidene fluoride-co- hexafluoropropylene) composite membrane microstructure to improveperformance in direct methanol fuel cells, J. Electrochem. Soc. 157 (2010) B522–B528.
[58]W. Li, A. Manthiram, M.D. Guiver, B. Liu, High performance direct methanol fuel cells based on acid–base blend membranes containing benzotriazole, Elec- trochem. Commun. 12 (2010) 607–610.
[59]S.H. Seo, C.S. Lee, A study on the overall efficiency of direct methanol fuel cell
by methanol crossover current, Appl. Energy 87 (2010) 2597–2604.
[60]C.C. Yang, S.J. Chiu, K.T. Lee, W.C. Chien, C.T. Lin, C.A. Huang, Study of poly(vinylalcohol)/titanium oxide composite polymer membranes and their applicationon alkaline direct alcohol fuel cell, J. Power Sources 184 (2008) 44–51.
[61]Y. Xiong, Q.L. Liu, Q.G. Zhang, A.M. Zhu, Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells , J. Power Sources 183 (2008) 447–453.
[62]C.C. Yang, S.J. Chiu, W.C. Chien, Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes , J. Power Sources 162(2006) 21–29.
[63]G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zang, Electrochem. Acta 49 (2004) 821.
[64]A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy, E. Peled, J. Power Sources 117 (2003) 22.
[65]S.C. Kelley, G.A. Deluga, W.H. Smyrl, Electrochem. Solid-State Lett. 3 (2000) 407
[66]M. Tatsumisago, T. Minami, J. Am. Ceram. Soc. 72 (1989) 484.
[67]M. Tatsumisago, K. Kishida, T. Minami, Solid State Ion. 59 (1993) 171.
[68]M. Tatsumisago, H. Honjo, Y. Sakai, T. Minami, Solid State Ion. 74 (1994) 105.
[69]A. Matsuda, H. Honjo, M. Tatsumisago, T. Minami, Chem. Lett. (1998) 1189.
[70]T. Kanzaki, A. Matsuda, Y. Kotani, M. Tatsumisago, T. Minami, Chem. Lett. (2000) 1314.
[71]A. Matsuda, T. Kanzaki, Y. Kotani, M. Tatsumisago, T. Minami, Solid State Ion. 139 (2001) 113.
[72]A. Matsuda, T. Kanzaki, K. Tadanaga, M. Tatsumisago, T. Minami, Electrochim. Acta 47 (2001) 939.
[73]A. Matsuda, T. Kanzaki, K. Tadanaga, M. Tatsumisago, T. Minami, J. Ceram. Soc. Jpn. 110 (2002) 131.
[74]L.D. Paulson, Computer 36 (2003) 10.
[75]Lange's Handbook of Chemistry, 10th ed
[76]TECHNICAL BULLETIN — 012a Principles of Insulation Testing
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6488-
dc.description.abstract燃料電池是現今替代能源的一個重要研究議題,因為它方便攜帶,燃料容易取得,而且不會排放破壞環境的廢棄物,是很有潛力的新一代能源,但是目前燃料電池成本昂貴,如何利用較低的成本,製造高效率的燃料電池,是許多研究的方向。
本實驗將奈米碳管用硫酸與硝酸進行磺酸化改質,使碳管壁上結合親水磺酸根,在超音波震盪可以均勻分散在水中。我們將奈米碳管溶於聚乙烯醇/聚磺酸化苯乙烯溶液中,依照不同成分加以編號,混和均勻後再溶液倒入塑膠培養皿中,烘乾成膜。之後利用戊二醛做交聯劑,在聚乙烯醇薄膜表面進行縮合交聯反應,交聯後的薄膜能在水中不被水解,最後薄膜浸泡鹽酸溶液以增加薄膜的質子含量。
我們進行聚乙烯醇複材的特性分析,包括離子傳導度,飽和含水率,甲醇滲透度、拉伸強度的測試,最後以本實驗室研發的燃料電池系統進行電池效能測試,實驗結果發現,添加聚磺酸化苯乙烯能有效增加薄膜的質子傳導度,較純PVA膜增加10倍,並且有效減低質子傳導的阻礙。添加奈米碳管後,薄膜機械強度較純PVA增加2.5倍,甲醇滲透率減低至7.07 × 10-10 cm2/s,較Nafion 117的1.86 × 10-6 cm2/s低許多,並使含水率提高。電池性能方面,添加奈米碳管有效使燃料使用率提高至99%,有效阻絕甲醇滲透到陰極而造成電流降低,而電池效率為18%。在成本、效能上都表現優異。
zh_TW
dc.description.abstractThe energy problems are serious topic this days. The fuel cell is a potential energy in the future, because people get the fuel-methanol easily, and the cell is light, easy to take, and we won’t make any pollution to the environment.
In this research, we used sulfuric acid and nitric acid to make the carbon nanotube sulfonated. The wall of tube are full of sulfonated bonds, and we solved the tube into water with ultra-sonic vibration. Than we solve the nanotube into PVA/PSSNa solution, and pull the solution into plastic dish. After drying , the solution change into membrane, we put the membrane in hydrochloric acid/glutaraldehyde/acetone solution, in order to make the polymer membrane cross-linked. Than we put the cross-linked membrane in hydrochloric acid.
The membrane was analysed , included water consist, ion conductivity, methanol permeation, tensile strength, and cell test. The membrane ion conductivity was improve with adding PSSNa, and decrease the resistance of ion conduction. The ultimate strength and water consist of membrane was improved with adding carbon nanotube and decrease the methanol permeation. In fuel cell testing, the fuel efficiency was increase to 99% with adding carbon nanotube. The cell efficiency is 18%, with low cost.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:14:09Z (GMT). No. of bitstreams: 1
ntu-101-R99549023-1.pdf: 1710704 bytes, checksum: 545ff55d9b572605e31523a76a99133a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 燃料電池的發展 2
1.3 研究動機與目的 1
第二章 文獻回顧 4
2.1 奈米探管介紹 4
2.1.1 奈米探管的發現 4
2.1.2 奈米碳管的分類. 5
2.2 奈米碳管的製備 6
2.3 奈米碳管與高分子複合材料 8
2.3.1奈米碳管的分散 8
2.3.2以奈米碳管強化高分子材料 10
2.4 燃料電池 11
2.4.1質子交換燃料電池 11
2.4.2直接甲醇燃料電池 12
2.4.3目前甲醇燃料電池的發展 14
2.5 質子傳導膜 14
2.5.1質子傳導膜的傳導機制 14
2.5.2 Nafion質子傳導膜 16
2.5.3有機高分子質子傳導膜 16
2.6 聚乙烯醇質子傳導膜 17
2.6.1聚乙烯醇介紹 17
2.6.2聚乙烯醇在質子傳導膜的應用 18
第三章 實驗部分 20
3.1 實驗藥品 20
3.2 實驗儀器 21
3.3 薄膜的製備 22
3.3.1 奈米碳管的改質 22
3.3.2 聚乙烯醇薄膜製備 22
3.3.3 聚乙烯醇/磺酸化奈米碳管複和材料製備 23
3.3.4 聚乙烯醇/磺酸化奈米碳管/聚磺酸化苯乙烯複和材料製備 23
3.3.5 化學交聯反應 24
3.3.6 不同成分的薄膜製備 25
3.4 測試與分析 26
3.4.1 含水飽和率 26
3.4.2 質子導電度 26
3.4.3 甲醇滲透度 27
3.4.4 抗張拉伸強度 28
3.4.5 甲醇燃料電池應用 29
第四章 結果與討論 33
4.1 PVA/PSSNa/CNT複材的製備 33
4.1.1 PVA的性質 33
4.1.2 奈米碳管的分散 33
4.1.3 聚磺酸苯乙烯的添加 33
4.1.4 PVA薄膜的交聯 34
4.2 含水飽和率 34
4.3 離子導電度 35
4.4 甲醇滲透度 36
4.5 抗張拉伸強度 36
4.6 薄膜表面型態分析 37
4.7 甲醇燃料電池應用 38
4.7.1 填充式甲醇燃料電池表現 38
4.7.2 循環燃料槽式燃料電池表現 40
第五章 結論 41
第六章 參考文獻 43
dc.language.isozh-TW
dc.title奈米碳管改質聚乙烯醇複材特性研究與甲醇燃料電池的應用zh_TW
dc.titleThe application of Poly (vinyl alcohol)/carbonnanotube
composite in Methanol Fuel cell
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英,謝國煌
dc.subject.keyword聚乙烯醇,聚磺酸化苯乙烯,奈米碳管,甲醇燃料電池,質子交換膜,zh_TW
dc.subject.keywordpoly (vinyl alcohol),PSSNa,carbon nanotube,DMFC,en
dc.relation.page70
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved