Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏(Chun-Hung Lin)
dc.contributor.authorSheng-Huang Linen
dc.contributor.author林聖皇zh_TW
dc.date.accessioned2021-06-16T23:05:50Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-06
dc.identifier.citation1. Hopkins, F. G. (1921) Biochem J 15, 286-305
2. Quastel, J. H., Stewart, C. P., and Tunnicliffe, H. E. (1923) Biochem J 17, 586-592
3. Meldrum, N. U., and Dixon, M. (1930) Biochem J 24, 472-496
4. Nicolet, B. H. (1930) Science 71, 589-590
5. Griffith, O. W. (1999) Free Radic Biol Med 27, 922-935
6. Sies, H. (1999) Free Radic Biol Med 27, 916-921
7. Lu, S. C. (2000) Curr Top Cell Regul 36, 95-116
8. Dalle-Donne, I., Milzani, A., Gagliano, N., Colombo, R., Giustarini, D., and Rossi, R. (2008) Antioxid Redox Signal 10, 445-473
9. Schafer, F. Q., and Buettner, G. R. (2001) Free Radic Biol Med 30, 1191-1212
10. Xiong, Y., Uys, J. D., Tew, K. D., and Townsend, D. M. (2011) Antioxid Redox Signal 15, 233-270
11. Reinartz, M., Ding, Z., Flogel, U., Godecke, A., and Schrader, J. (2008) J Biol Chem 283, 17440-17449
12. Imlay, J. A. (2008) Ann Rev. Biochemistry 77, 755-776
13. Moriarty-Craige, S. E., and Jones, D. P. (2004) Ann Rev. Nutrition 24, 481-509
14. Giustarini, D., Milzani, A., Aldini, G., Carini, M., Rossi, R., and Dalle-Donne, I. (2005) Antioxid Redox Signal 7, 930-939
15. Martinez-Ruiz, A., and Lamas, S. (2007) Cardiovasc Res 75, 220-228
16. Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D., and Milzani, A. (2009) Trends Biochem Sci 34, 85-96
17. Gilbert, H. F. (1995) Methods Enzymol 251, 8-28
18. Park, E. M., and Thomas, J. A. (1988) Biochim Biophys Acta 964, 151-160
19. Townsend, D. M. (2007) Mol Interv 7, 313-324
20. Cooper, A. J., Pinto, J. T., and Callery, P. S. (2011) Expert Opin Drug Metab Toxicol 7, 891-910
21. Gravina, S. A., and Mieyal, J. J. (1993) Biochemistry 32, 3368-3376
22. Starke, D. W., Chock, P. B., and Mieyal, J. J. (2003) J Biol Chem 278, 14607-14613
23. Holmgren, A., Johansson, C., Berndt, C., Lonn, M. E., Hudemann, C., and Lillig, C. H. (2005) Biochem Soc Trans 33, 1375-1377
24. Findlay, V. J., Townsend, D. M., Morris, T. E., Fraser, J. P., He, L., and Tew, K. D. (2006) Cancer Res 66, 6800-6806
25. Jung, C. H., and Thomas, J. A. (1996) Arch Biochem Biophys 335, 61-72
26. Thomas, J. A., Poland, B., and Honzatko, R. (1995) Arch Biochem Biophys 319, 1-9
27. Lindley, H. (1960) Biochem J 74, 577-584
28. Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R., and Rhee, S. G. (2000) Anal Biochem 283, 214-221
29. Casagrande, S., Bonetto, V., Fratelli, M., Gianazza, E., Eberini, I., Massignan, T., Salmona, M., Chang, G., Holmgren, A., and Ghezzi, P. (2002) Proc Natl Acad Sci U S A 99, 9745-9749
30. Dalle-Donne, I., Colombo, G., Gagliano, N., Colombo, R., Giustarini, D., Rossi, R., and Milzani, A. (2011) Free Radic Res 45, 3-15
31. Rokutan, K., Thomas, J. A., and Johnston, R. B., Jr. (1991) J Immunol 147, 260-264
32. Gao, X. H., Bedhomme, M., Veyel, D., Zaffagnini, M., and Lemaire, S. D. (2009) Mol Plant 2, 218-235
33. Craghill, J., Cronshaw, A. D., and Harding, J. J. (2004) Biochem J 379, 595-600
34. West, M. B., Hill, B. G., Xuan, Y. T., and Bhatnagar, A. (2006) FASEB J 20, 1715-1717
35. Newman, S. F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W. M., Klein, J. B., Turner, D. M., and Butterfield, D. A. (2007) J Neurosci Res 85, 1506-1514
36. Rouhier, N., Lemaire, S. D., and Jacquot, J. P. (2008) Annu Rev Plant Biol 59, 143-166
37. Nordstrand, K., slund, F., Holmgren, A., Otting, G., and Berndt, K. D. (1999) J Mol Biol 286, 541-552
38. Lind, C., Gerdes, R., Hamnell, Y., Schuppe-Koistinen, I., von Lowenhielm, H. B., Holmgren, A., and Cotgreave, I. A. (2002) Arch Biochem Biophys 406, 229-240
39. Cheng, G., Ikeda, Y., Iuchi, Y., and Fujii, J. (2005) Arch Biochem Biophys 435, 42-49
40. Niture, S. K., Velu, C. S., Bailey, N. I., and Srivenugopal, K. S. (2005) Arch Biochem Biophys 444, 174-184
41. Klatt, P., Pineda Molina, E., Perez-Sala, D., and Lamas, S. (2000) Biochem J 349, 567-578
42. Chiang, B. Y., Chou, C. C., Hsieh, F. T., Gao, S., Lin, J. C., Lin, S. H., Chen, T. C., Khoo, K. H., and Lin, C. H. (2012) Angew Chem Int Ed 51, 16
43. Dubin, D. T. (1959) Biochem Bioph Res Co 1, 262-265
44. Tabor, H., and Tabor, C. W. (1975) J Biol Chem 250, 2648-2654
45. Bollinger, J. M., Jr., Kwon, D. S., Huisman, G. W., Kolter, R., and Walsh, C. T. (1995) J Biol Chem 270, 14031-14041
46. Smith, K., Borges, A., Ariyanayagam, M. R., and Fairlamb, A. H. (1995) Biochem J 312 ( Pt 2), 465-469
47. Chiang, B. Y., Chen, T. C., Pai, C. H., Chou, C. C., Chen, H. H., Ko, T. P., Hsu, W. H., Chang, C. Y., Wu, W. F., Wang, A. H., and Lin, C. H. (2010) J Biol Chem 285, 25345-25353
48. Ong, S. E., and Mann, M. (2005) Nat Chem Biol 1, 252-262
49. Domon, B., and Aebersold, R. (2010) Nat Biotech 28, 710-721
50. Choudhary, C., and Mann, M. (2010) Nat Rev. Mol Cell Biol 11, 427-439
51. Wilm, M. (2009) Proteomics 9, 4590-4605
52. Cravatt, B. F., Simon, G. M., and Yates, J. R., 3rd. (2007) Nature 450, 991-1000
53. Qian, W. J., Jacobs, J. M., Liu, T., Camp, D. G., 2nd, and Smith, R. D. (2006) Mol Cell Proteomics 5, 1727-1744
54. Domon, B., and Aebersold, R. (2006) Science 312, 212-217
55. Xie, F., Liu, T., Qian, W. J., Petyuk, V. A., and Smith, R. D. (2011) J Biol Chem 286, 25443-25449
56. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Mol Cell Proteomics 1, 376-386
57. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Nat Biotech 17, 994-999
58. Yi, E. C., Li, X. J., Cooke, K., Lee, H., Raught, B., Page, A., Aneliunas, V., Hieter, P., Goodlett, D. R., and Aebersold, R. (2005) Proteomics 5, 380-387
59. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K., and Hamon, C. (2003) Anal Chem 75, 1895-1904
60. Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D. F., Burkhard, P. R., and Sanchez, J. C. (2008) Anal Chem 80, 2921-2931
61. Liu, H., Sadygov, R. G., and Yates, J. R., 3rd. (2004) Anal Chem 76, 4193-4201
62. Qian, W. J., Jacobs, J. M., Camp, D. G., 2nd, Monroe, M. E., Moore, R. J., Gritsenko, M. A., Calvano, S. E., Lowry, S. F., Xiao, W., Moldawer, L. L., Davis, R. W., Tompkins, R. G., and Smith, R. D. (2005) Proteomics 5, 572-584
63. Zhang, Y., Wen, Z., Washburn, M. P., and Florens, L. (2009) Anal Chem 81, 6317-6326
64. Zhou, J. Y., Schepmoes, A. A., Zhang, X., Moore, R. J., Monroe, M. E., Lee, J. H., Camp, D. G., Smith, R. D., and Qian, W. J. (2010) J Proteome Res 9, 5698-5704
65. Strittmatter, E. F., Ferguson, P. L., Tang, K., and Smith, R. D. (2003) JACS Mass Spectrom 14, 980-991
66. Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., and Yates, J. R., 3rd. (2003) Anal Chem 75, 2470-2477
67. Smith, R. D., Anderson, G. A., Lipton, M. S., Pasa-Tolic, L., Shen, Y., Conrads, T. P., Veenstra, T. D., and Udseth, H. R. (2002) Proteomics 2, 513-523
68. Monroe, M. E., Tolic, N., Jaitly, N., Shaw, J. L., Adkins, J. N., and Smith, R. D. (2007) Bioinformatics 23, 2021-2023
69. Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W. J., Webb-Robertson, B. J., Smith, R. D., and Lipton, M. S. (2006) J Proteome Res 5, 277-286
70. Polpitiya, A. D., Qian, W. J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp, D. G., 2nd, Anderson, G. A., and Smith, R. D. (2008) Bioinformatics 24, 1556-1558
71. Nakamura, T., and Lipton, S. A. (2009) Apoptosis 14, 455-468
72. Martinez-Ruiz, A., and Lamas, S. (2004) Cardiovasc Res 62, 43-52
73. Liu, L., Yan, Y., Zeng, M., Zhang, J., Hanes, M. A., Ahearn, G., McMahon, T. J., Dickfeld, T., Marshall, H. E., Que, L. G., and Stamler, J. S. (2004) Cell 116, 617-628
74. Behrendt, D., and Ganz, P. (2002) Am J Cardiol 90, 40L-48L
75. Xu, L., Eu, J. P., Meissner, G., and Stamler, J. S. (1998) Science 279, 234-237
76. Bogdan, C. (2001) Nat Immunol 2, 907-916
77. Karpuzoglu, E., and Ahmed, S. A. (2006) Nitric Oxide 15, 177-186
78. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001) Nat Cell Biol 3, 193-197
79. Lane, P., Hao, G., and Gross, S. S. (2001) Sci STKE 2001, re1
80. Lindermayr, C., Saalbach, G., and Durner, J. (2005) Plant Physiol 137, 921-930
81. Huang, B., Liao, C. L., Lin, Y. P., Chen, S. C., and Wang, D. L. (2009) J Proteome Res 8, 4835-4843
82. Yu, S. M., Hung, L. M., and Lin, C. C. (1997) Circulation 95, 1269-1277
83. Lopez-Farre, A., Sanchez de Miguel, L., Caramelo, C., Gomez-Macias, J., Garcia, R., Mosquera, J. R., de Frutos, T., Millas, I., Rivas, F., Echezarreta, G., and Casado, S. (1997) Am J Physiol 272, H760-768
84. Ziche, M., Morbidelli, L., Masini, E., Amerini, S., Granger, H. J., Maggi, C. A., Geppetti, P., and Ledda, F. (1994) J Clin Invest 94, 2036-2044
85. Braam, B., de Roos, R., Dijk, A., Boer, P., Post, J. A., Kemmeren, P. P., Holstege, F. C., Bluysen, H. A., and Koomans, H. A. (2004) Am J Physiol Heart Circ Physiol 287, H1977-1986
86. Chen, Y. J., Ku, W. C., Lin, P. Y., Chou, H. C., and Khoo, K. H. (2010) J Proteome Res 9, 6417-6439
87. Pai, C. H., Chiang, B. Y., Ko, T. P., Chou, C. C., Chong, C. M., Yen, F. J., Chen, S., Coward, J. K., Wang, A. H., and Lin, C. H. (2006) EMBO J 25, 5970-5982
88. Meng, T. C., Fukada, T., and Tonks, N. K. (2002) Molecular cell 9, 387-399
89. Comini, M. A., Dirdjaja, N., Kaschel, M., and Krauth-Siegel, R. L. (2009) Int J Parasitol 39, 1059-1062
90. Koenig, K., Menge, U., Kiess, M., Wray, V., and Flohe, L. (1997) J Biol Chem 272, 11908-11915
91. Crans, D. C., Kazlauskas, R. J., Hirschbein, B. L., Wong, C. H., Abril, O., and Whitesides, G. M. (1987) Method Enzymol 136, 263-280
92. Tsou, C. C., Tsai, C. F., Tsui, Y. H., Sudhir, P. R., Wang, Y. T., Chen, Y. J., Chen, J. Y., Sung, T. Y., and Hsu, W. L. (2010) Mol Cell Proteomics 9, 131-144
93. Barrett, W. C., DeGnore, J. P., Konig, S., Fales, H. M., Keng, Y. F., Zhang, Z. Y., Yim, M. B., and Chock, P. B. (1999) Biochemistry 38, 6699-6705
94. Sana, T. R. (2006) Mol Cell Proteomics 5, S356-S356
95. Ji, Y., Akerboom, T. P., Sies, H., and Thomas, J. A. (1999) Arch Biochem Biophys 362, 67-78
96. Russell, W. K., Park, Z. Y., and Russell, D. H. (2001) Anal Chem 73, 2682-2685
97. Kapp, E. A., Schutz, F., Connolly, L. M., Chakel, J. A., Meza, J. E., Miller, C. A., Fenyo, D., Eng, J. K., Adkins, J. N., Omenn, G. S., and Simpson, R. J. (2005) Proteomics 5, 3475-3490
98. Rajan, R., and Balaram, P. (1996) Int J Pept Protein Res 48, 328-336
99. Stark, G. R., Stein, W. H., and Moore, S. (1960) J Biol Chem 235, 3177-3181
100. Qin, W., Smith, J. B., and Smith, D. L. (1993) Biochim Biophys Acta 1181, 103-110
101. Norais, N., Tang, D., Kaur, S., Chamberlain, S. H., Masiarz, F. R., Burke, R. L., and Marcus, F. (1996) J Virol 70, 7379-7387
102. Volkin, D. B., Mach, H., and Middaugh, C. R. (1997) Mol Biotech 8, 105-122
103. Lippincott, J., and Apostol, I. (1999) Anal Biochem 267, 57-64
104. Tao, L., Jiao, X., Gao, E., Lau, W. B., Yuan, Y., Lopez, B., Christopher, T., RamachandraRao, S. P., Williams, W., Southan, G., Sharma, K., Koch, W., and Ma, X. L. (2006) Circulation 114, 1395-1402
105. Holmgren, A. (1979) J Biol Chem 254, 9627-9632
106. Holmgren, A. (1989) J Biol Chem 264, 13963-13966
107. Sengupta, R., Ryter, S. W., Zuckerbraun, B. S., Tzeng, E., Billiar, T. R., and Stoyanovsky, D. A. (2007) Biochemistry 46, 8472-8483
108. Mitchell, D. A., and Marletta, M. A. (2005) Nat Chem Biol 1, 154-158
109. Wang, Y., Liu, T., Wu, C., and Li, H. (2008) JACS Mass Spectrom 19, 1353-1360
110. Wu, C., Liu, T., Chen, W., Oka, S., Fu, C., Jain, M. R., Parrott, A. M., Baykal, A. T., Sadoshima, J., and Li, H. (2010) Mol Cell Proteomics 9, 2262-2275
111. Wu, C., Parrott, A. M., Fu, C., Liu, T., Marino, S. M., Gladyshev, V. N., Jain, M. R., Baykal, A. T., Li, Q., Oka, S., Sadoshima, J., Beuve, A., Simmons, W. J., and Li, H. (2011) Antioxid Redox Signal 15, 2565-2604
112. Mitchell, D. A., Morton, S. U., Fernhoff, N. B., and Marletta, M. A. (2007) Proc Natl Acad Sci U S A 104, 11609-11614
113. Gallogly, M. M., and Mieyal, J. J. (2007) Curr Opin Pharmacol 7, 381-391
114. Gaston, B. M., Carver, J., Doctor, A., and Palmer, L. A. (2003) Mol Interv 3, 253-263
115. Barglow, K. T., Knutson, C. G., Wishnok, J. S., Tannenbaum, S. R., and Marletta, M. A. (2011) Proc Natl Acad Sci U S A 108, E600-606
116. Hashemy, S. I., and Holmgren, A. (2008) J Biol Chem 283, 21890-21898
117. Nardai, G., Sass, B., Eber, J., Orosz, G., and Csermely, P. (2000) Arch Biochem Biophys 384, 59-67
118. Papp, E., Nardai, G., Soti, C., and Csermely, P. (2003) Biofactors 17, 249-257
119. Martinez-Ruiz, A., Villanueva, L., Gonzalez de Orduna, C., Lopez-Ferrer, D., Higueras, M. A., Tarin, C., Rodriguez-Crespo, I., Vazquez, J., and Lamas, S. (2005) Proc Natl Acad Sci U S A 102, 8525-8530
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64889-
dc.description.abstract麩胱甘肽 (GSH) 藉由其上的硫醇與蛋白質半胱胺酸 (cysteine) 的硫醇形成雙硫鍵稱為蛋白質的麩胱甘肽化 (S-glutathionylation) 。 S-glutathionylation 是一種可逆的蛋白質轉譯後修飾反應,能夠調控細胞內氧化還原平衡與保護細胞避免過度氧化。雖然目前有許多的方法可以偵測蛋白質的S-glutathionylation,但大部份的方法中並無法直接地獲得特定修飾位置的資訊。在本實驗室之前的研究中提出了利用將大腸桿菌的 Gsp synthetase 與 biotinyl-spermine 送入人類細胞中,以鑑定細胞內含有 S-glutathionylation 的蛋白質及其修飾位置。這個方法提供了有效率且可大規模分析相關的蛋白質體學。在本論文中,我們應用並最佳化此以 Gsp-biotin 為基礎的親合性純化修飾蛋白質,另外結合質譜分析,達到專一性的辨識 GSH 修飾的位置,以及對被 S-glutathionylation 的蛋白質進行定量。
在本論文中,我們使用蛋白質酪胺酸磷酸水解酶1B (protein tyrosine phosphatase 1B, PTP1B) 作為模式蛋白,以探討在蛋白質和胜肽層級上胰蛋白酶水解以及純化 GSH 修飾的蛋白質/胜肽的效率,建立及最佳化整個純化以及樣品前處理的步驟。目前為止,利用質譜分析 GSH-PTP1B 的極限最低可達 62 ng 。我們也使用 MS1 細胞株,一個在探討氧化還原研究中被廣泛使用的細胞株,來探討所建立的純化 GSH 修飾蛋白質/胜肽步驟的效率。於細胞外的條件下對 MS-1 細胞蛋白質進行 GSH 的修飾並結合質譜分析,目前辨識到了472條含有 GSH 修飾的胜肽以及其所屬的317個蛋白質。於辨識到的蛋白質中,其中有一些已有文獻廣泛的探討它們的 S-glutathionylaiton 。此外,在本研究所開發的方法中,不但可以專一性的辨識胜肽鏈上被 GSH 修飾的位置,還可以分辨同一條胜肽鏈上具有多個 cysteine ,哪一個 cysteine 是被 GSH 所修飾。
在免標定定量法的部分,我們結合高敏感性的質譜分析以及生物資訊學的工具 (IDEAL-Q) ,藉由估計萃取的離子層析圖譜 (extracted ion chromatography, XIC) 訊號峰底下的面積以估算各 S-glutathionylation 胜肽的量。我們在 MS-1 細胞的蛋白質中加入一序列不同量的 GSH-PTP1B ,在 LC-MS/MS 分析之後計算其被 S-glutathionylation 的三條胜肽鏈 (包括 HEASDFPC32(GSH)R, GSLKC121(GSH)AQYWPQK, ESGSLSPEHGPVVVHC215(GSH)SAGIGR ) 訊號峰下的面積。並以面積對濃度作圖以得到標準曲線,獲得定量的範圍落在 1.8 pmol 到 3.9 nmol 之間。
最後,在結合此一整套純化以及質譜分析的流程以及定量的方法之後,可以進一步探討 S-nitrosylation 與 S-glutathionylation 的關係,以及 S-nitrosylation 的穩定性與反應性。本論文不但提供一個有用的方法鑑定 S-glutathionylation 的蛋白質體,並可以深入探討細胞內氧化還原的調控機制。
zh_TW
dc.description.abstractGlutathione (GSH) forms a disulfide bond with cysteines of proteins, a dynamic way to regulate cellular redox balance and protect cells from oxidative damage. Although several methods are available to detect glutathionylated proteins, few of them provide direct assignment of modified cysteine residues. Previously we demonstrated an efficient method suitable for large-scale characterizations of glutathionylated proteins in vivo by introducing E.coli glutathionylspermindine synthetase (GspS) and biotinyl-spermine to human cells. In this thesis, we applied the method and optimized the conditions for the enrichment and subsequent mass spectrometric analysis to achieve site-specific GSH identification and quantitative proteomics. We utilized protein tyrosine phosphatase 1B (PTP1B), a well-known and extensively studied protein in redox biology, as a model to optimize the procedures of trypsin digestion and enrichment on both the protein and peptide levels. The detection limit of GSH-PTP1B was found to be 1.8 pmol. In MS-1 endothelial cells we have identified 472 unique glutathionylated peptides (mascot score ≥26, false decoy rate <2.21%) resulting from 317 glutathionylated proteins. Some of which were known to be glutathionylated. In addition, we are able to distinguish between S-glutathionylation and other cysteine modifications in one peptide. The label-free quantitative approach was carried out by integration of highly sensitive mass spectrometric techniques with bioinformatics tools (IDEAL-Q) to calculate the extracted ion chromatogram (XIC) of glutathionylation level on peptides. That is to say, we spiked a series of quantified PTP1B into MS-1 cell lysate and calculated the peak areas of three PTP1B peptides (including HEASDFPC32R, GSLKC121AQYWPQK, ESGSLSPEHGPVVVHC215SAGIGR ) during LC-MS/MS analyses. The range of quantitation is found between 1.8 pmol and 3.9 nmol. This developed method will be useful not only to identify and characterize glutathionylated proteins, but also to decipher how these identified cysteines are subjected to redox regulation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:05:50Z (GMT). No. of bitstreams: 1
ntu-101-R99b46001-1.pdf: 4985963 bytes, checksum: 5047a7b82d557a043120dfa4719ffc6b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝 誌 I
縮寫表 II
中文摘要 IV
Abstract VI
第一章 緒論 1
1.1 Glutathione 簡介 1
1.2 Glutathionylation 簡介 3
1.2.1 細胞內的硫醇與氧化還原狀態 3
1.2.2 Glutathionylation 的形成機制 4
1.3 簡介當前研究蛋白質 S-glutathionylation 的方法 7
1.3.1 以放射性同位素 35S 標定 GSH 7
1.3.2 利用 biotin 標定的 GSH 及其類似物研究蛋白質的 S-glutathionylation 8
1.3.3 利用 glutathione 的抗體進行蛋白質 S-glutathionylation 的分析 9
1.3.4 Glutaredoxin (Grx) 結合 biotin switch 法 9
1.3.5 Glutathione S-transferase (GST) 偵測法 10
1.3.6 GSH 或 GSH analogs 固定偵測法 11
1.3.7 總結現有方法之限制 11
1.4 Glutathionylspermidine synthetase/amidase (GspSA) 的簡介 11
1.5 常見結合液相層析-質譜分析 (liquid chromatography mass spectrometry) 的定量方法 12
1.5.1 穩定同位素標定定量法 (Stable isotope labeling quantiation) 13
1.5.1.1 Stable isotope labeling with amino acids in cell culture (SILAC) 13
1.5.1.2 Isotpe-coded affinity tag (ICAT) 14
1.5.1.3 Isobaric tags for relative and absolute quantitation (iTRAQ) 與 Tandem mass tags (TMT) 15
1.5.2 免標定定量法 (Label-free quantitation) 16
1.6 蛋白質的 S-nitrosylation 簡介 17
1.7 實驗動機 17
1.8 實驗流程圖 19
第二章 材料與方法 20
2.1 實驗藥品 20
2.2 表現質體 (Plasmid) 與菌種 20
2.2.1 表現質體與基因 20
2.2.2 菌種 20
2.3 細胞培養 20
2.3.1 細胞種類 20
2.3.2 培養液配製 21
2.3.3 繼代培養 21
2.4 利用化學酵素 (chemoenzymatic) 合成法合成與純化 Gsp-biotin 之化合物 21
2.4.1 Gsp-biotin 小分子的合成 21
2.4.2 ATP回復系統 (ATP regenerating system) 23
2.4.3 薄層層析法 (Thin layer chromatography, TLC) 23
2.4.4 Gsp-biotin 小分子的純化 24
2.4.5 Gsp-biotin 定性分析 24
2.4.5.1 以質譜儀鑑定其純度與分子量 24
2.4.5.2 以 Gsp amidase 對 Gsp-biotin 小分子進行定性分析 24
2.5 以快速蛋白層析儀 ( Fast protein liquid chromatography, FPLC ) 純化Gsp-biotin 小分子以及 His-tagged 蛋白質 25
2.5.1 利用陽離子交換樹脂管柱純化 Gsp-biotin 小分子 25
2.5.2 使用 Hitrap HP Chelating 管柱純化 His-tagged 蛋白質 25
2.6 蛋白質定量法 26
2.6.1 Bradford 定量法 26
2.6.2 BCA定量法 27
2.7 蛋白質膠體電泳分析 (Polyacryamide Gel Electrophoresis) 28
2.8 西方點墨法 (Western blot) 29
2.9 SDS PAGE染色法 30
2.9.1 Coomassie Blue染色法 30
2.9.2 銀染法 (Silver stain) 31
2.10 建立in vitro下純化Gsp-biotin S-thiolated 蛋白質或胜肽的方法 32
2.10.1 細胞裂解 (Cell lysis) 32
2.10.2 以Gsp-biotin在in vitro下對蛋白質進行標定 32
2.10.3 以 iodoacetamide (IAM) 對蛋白質 cysteine 上自由的硫醇進行遮蔽 33
2.10.4 去除過量 Gsp-biotin 的方法 33
2.10.4.1 分子量大小篩選管柱法 (Size exclusion column) 33
2.10.4.2 透析法 (Dialysis) 33
2.10.4.3 丙酮沉澱法 (Acetone precipitation) 33
2.10.5 以胰蛋白酶 (Trypsin) 將蛋白質切成胜肽 34
2.10.5.1 在尿素 (Urea) 作用下進行胰蛋白酶剪切 34
2.10.5.2 在三氟乙醇 (Trifluoroethanol) 作用下進行胰蛋白酶剪切 34
2.10.6 以 Streptavidin agarose bead 純化Gsp-biotin修飾的胜肽 35
2.10.7 利用Gsp amidase將純化出之胜肽上的Gsp-biotin水解成GSH 35
2.11 質譜分析 36
2.11.1 去鹽 (Desalting) 36
2.11.2 MALDI-TOF 分析 36
2.11.3 LC-ESI-MS/MS 分析 36
2.11.4 Collision energy 37
2.11.5 資料庫搜尋與數據分析 38
2.12 結合質譜技術之免標定定量法定量分析 39
2.12.1 質譜定量範圍分析 39
2.12.2 以免標定定量法進行質譜定量分析 39
2.13 細胞內蛋白質的亞硝基化反應 (nitrosylation) 40
第三章 實驗結果 41
Part I 在in vitro下合成與純化Gsp-biotin小分子的方法之建立 41
3.1.1 Gsp-biotin小分子的酵素合成法 41
3.1.2 Gsp-biotin小分子的純化 41
3.1.3 Gsp-biotin小分子的定性分析 42
Part II Gsp-biotin修飾之蛋白質/胜肽於質譜分析前之樣品處理方法 44
3.2.1 在in vitro下製備Gsp-biotin修飾的PTP1B 蛋白質 45
3.2.2 移除未反應的Gsp-biotin 條件測試 46
3.2.3 胰蛋白酶水解 (Trypsin digestion) 條件選擇 48
3.2.4 以streptavidin純化Gsp-biotin修飾蛋白質/胜肽的沖提 (elution) 條件之選擇 50
Part III 以質譜分析 Gsp-biotin 修飾胜肽序列特性 52
3.3.1 Gsp-biotin 修飾 PTP1B 的質譜分析 52
3.3.2 ESI-Q-TOF的裂片 (fragmentation) 能量選擇 55
3.3.3 以質譜分析 MS-1 內皮細胞中 in vitro S-glutathionylation 潛在蛋白質 58
Part IV 以質譜為基礎之免標定定量法之建立 60
3.4 以PTP1B作為免標定定量法 (label-free quantitation) 的偵測動態範圍(dynamic range) 分析 60
Part V 利用Gsp-biotin探討S-glutathionylation與S-nitrosylation的關係 64
3.5.1 Cysteine的nitrosylation可能會促進glutathionylation的發生 64
3.5.2 以Gsp-biotin 在 in vitro 下探討 S-nitrosylated cysteine (nitrosothiol) 的穩定性 (stability) 以及反應性 (reactivity) 65
第四章 討論 69
4.1 Gsp-biotin 小分子的合成原理與 ATP 回復系統 69
4.2 移除未修飾的Gsp-biotin 方法之探討 70
4.3 在TFE條件下可以幫助胰蛋白酶水解蛋白質 72
4.3 Gsp amidase無法有效地將受到修飾的蛋白質/胜肽從streptavidin上沖提下來 75
4.4 Cysteine 上硫醇基 S-nitrosylation 的穩定性與反應性 75
第五章 結論與未來展望 81
第六章 參考文獻 82
附錄一 In vitro 下Gsp-biotin 修飾蛋白/胜肽純化流程 91
附錄二 質譜鑑定 GSH 修飾胜肽理論分子量對照表 92
附錄三 Bio-rad protein assay kit (Cat. 500-0006) 物質相容性表 93
dc.language.isozh-TW
dc.subject麩胱甘&#32957zh_TW
dc.subject化zh_TW
dc.subjectGsp-biotinzh_TW
dc.subject蛋白質體zh_TW
dc.subject純化zh_TW
dc.subject專一性的辨識zh_TW
dc.subject免標定定量法zh_TW
dc.subjectlabel-free quantitationen
dc.subjectS-glutathionylationen
dc.subjectGsp-biotinen
dc.subjectproteomicsen
dc.subjectenrichmenten
dc.subjectsite-specific identificationen
dc.title建立蛋白質麩胱甘肽化特定位鑑定方法與結合質譜的免標定定量法策略zh_TW
dc.titleSite-specific Identification and Label Free Quantitation of S-glutathionylated Proteinsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳玉如(Yu-Ju Chen),林俊成(Chun-Cheng Lin)
dc.subject.keyword麩胱甘&#32957,化,Gsp-biotin,蛋白質體,純化,專一性的辨識,免標定定量法,zh_TW
dc.subject.keywordS-glutathionylation,Gsp-biotin,proteomics,enrichment,site-specific identification,label-free quantitation,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved