請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64889完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
| dc.contributor.author | Sheng-Huang Lin | en |
| dc.contributor.author | 林聖皇 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:05:50Z | - |
| dc.date.available | 2017-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-06 | |
| dc.identifier.citation | 1. Hopkins, F. G. (1921) Biochem J 15, 286-305
2. Quastel, J. H., Stewart, C. P., and Tunnicliffe, H. E. (1923) Biochem J 17, 586-592 3. Meldrum, N. U., and Dixon, M. (1930) Biochem J 24, 472-496 4. Nicolet, B. H. (1930) Science 71, 589-590 5. Griffith, O. W. (1999) Free Radic Biol Med 27, 922-935 6. Sies, H. (1999) Free Radic Biol Med 27, 916-921 7. Lu, S. C. (2000) Curr Top Cell Regul 36, 95-116 8. Dalle-Donne, I., Milzani, A., Gagliano, N., Colombo, R., Giustarini, D., and Rossi, R. (2008) Antioxid Redox Signal 10, 445-473 9. Schafer, F. Q., and Buettner, G. R. (2001) Free Radic Biol Med 30, 1191-1212 10. Xiong, Y., Uys, J. D., Tew, K. D., and Townsend, D. M. (2011) Antioxid Redox Signal 15, 233-270 11. Reinartz, M., Ding, Z., Flogel, U., Godecke, A., and Schrader, J. (2008) J Biol Chem 283, 17440-17449 12. Imlay, J. A. (2008) Ann Rev. Biochemistry 77, 755-776 13. Moriarty-Craige, S. E., and Jones, D. P. (2004) Ann Rev. Nutrition 24, 481-509 14. Giustarini, D., Milzani, A., Aldini, G., Carini, M., Rossi, R., and Dalle-Donne, I. (2005) Antioxid Redox Signal 7, 930-939 15. Martinez-Ruiz, A., and Lamas, S. (2007) Cardiovasc Res 75, 220-228 16. Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D., and Milzani, A. (2009) Trends Biochem Sci 34, 85-96 17. Gilbert, H. F. (1995) Methods Enzymol 251, 8-28 18. Park, E. M., and Thomas, J. A. (1988) Biochim Biophys Acta 964, 151-160 19. Townsend, D. M. (2007) Mol Interv 7, 313-324 20. Cooper, A. J., Pinto, J. T., and Callery, P. S. (2011) Expert Opin Drug Metab Toxicol 7, 891-910 21. Gravina, S. A., and Mieyal, J. J. (1993) Biochemistry 32, 3368-3376 22. Starke, D. W., Chock, P. B., and Mieyal, J. J. (2003) J Biol Chem 278, 14607-14613 23. Holmgren, A., Johansson, C., Berndt, C., Lonn, M. E., Hudemann, C., and Lillig, C. H. (2005) Biochem Soc Trans 33, 1375-1377 24. Findlay, V. J., Townsend, D. M., Morris, T. E., Fraser, J. P., He, L., and Tew, K. D. (2006) Cancer Res 66, 6800-6806 25. Jung, C. H., and Thomas, J. A. (1996) Arch Biochem Biophys 335, 61-72 26. Thomas, J. A., Poland, B., and Honzatko, R. (1995) Arch Biochem Biophys 319, 1-9 27. Lindley, H. (1960) Biochem J 74, 577-584 28. Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R., and Rhee, S. G. (2000) Anal Biochem 283, 214-221 29. Casagrande, S., Bonetto, V., Fratelli, M., Gianazza, E., Eberini, I., Massignan, T., Salmona, M., Chang, G., Holmgren, A., and Ghezzi, P. (2002) Proc Natl Acad Sci U S A 99, 9745-9749 30. Dalle-Donne, I., Colombo, G., Gagliano, N., Colombo, R., Giustarini, D., Rossi, R., and Milzani, A. (2011) Free Radic Res 45, 3-15 31. Rokutan, K., Thomas, J. A., and Johnston, R. B., Jr. (1991) J Immunol 147, 260-264 32. Gao, X. H., Bedhomme, M., Veyel, D., Zaffagnini, M., and Lemaire, S. D. (2009) Mol Plant 2, 218-235 33. Craghill, J., Cronshaw, A. D., and Harding, J. J. (2004) Biochem J 379, 595-600 34. West, M. B., Hill, B. G., Xuan, Y. T., and Bhatnagar, A. (2006) FASEB J 20, 1715-1717 35. Newman, S. F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W. M., Klein, J. B., Turner, D. M., and Butterfield, D. A. (2007) J Neurosci Res 85, 1506-1514 36. Rouhier, N., Lemaire, S. D., and Jacquot, J. P. (2008) Annu Rev Plant Biol 59, 143-166 37. Nordstrand, K., slund, F., Holmgren, A., Otting, G., and Berndt, K. D. (1999) J Mol Biol 286, 541-552 38. Lind, C., Gerdes, R., Hamnell, Y., Schuppe-Koistinen, I., von Lowenhielm, H. B., Holmgren, A., and Cotgreave, I. A. (2002) Arch Biochem Biophys 406, 229-240 39. Cheng, G., Ikeda, Y., Iuchi, Y., and Fujii, J. (2005) Arch Biochem Biophys 435, 42-49 40. Niture, S. K., Velu, C. S., Bailey, N. I., and Srivenugopal, K. S. (2005) Arch Biochem Biophys 444, 174-184 41. Klatt, P., Pineda Molina, E., Perez-Sala, D., and Lamas, S. (2000) Biochem J 349, 567-578 42. Chiang, B. Y., Chou, C. C., Hsieh, F. T., Gao, S., Lin, J. C., Lin, S. H., Chen, T. C., Khoo, K. H., and Lin, C. H. (2012) Angew Chem Int Ed 51, 16 43. Dubin, D. T. (1959) Biochem Bioph Res Co 1, 262-265 44. Tabor, H., and Tabor, C. W. (1975) J Biol Chem 250, 2648-2654 45. Bollinger, J. M., Jr., Kwon, D. S., Huisman, G. W., Kolter, R., and Walsh, C. T. (1995) J Biol Chem 270, 14031-14041 46. Smith, K., Borges, A., Ariyanayagam, M. R., and Fairlamb, A. H. (1995) Biochem J 312 ( Pt 2), 465-469 47. Chiang, B. Y., Chen, T. C., Pai, C. H., Chou, C. C., Chen, H. H., Ko, T. P., Hsu, W. H., Chang, C. Y., Wu, W. F., Wang, A. H., and Lin, C. H. (2010) J Biol Chem 285, 25345-25353 48. Ong, S. E., and Mann, M. (2005) Nat Chem Biol 1, 252-262 49. Domon, B., and Aebersold, R. (2010) Nat Biotech 28, 710-721 50. Choudhary, C., and Mann, M. (2010) Nat Rev. Mol Cell Biol 11, 427-439 51. Wilm, M. (2009) Proteomics 9, 4590-4605 52. Cravatt, B. F., Simon, G. M., and Yates, J. R., 3rd. (2007) Nature 450, 991-1000 53. Qian, W. J., Jacobs, J. M., Liu, T., Camp, D. G., 2nd, and Smith, R. D. (2006) Mol Cell Proteomics 5, 1727-1744 54. Domon, B., and Aebersold, R. (2006) Science 312, 212-217 55. Xie, F., Liu, T., Qian, W. J., Petyuk, V. A., and Smith, R. D. (2011) J Biol Chem 286, 25443-25449 56. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Mol Cell Proteomics 1, 376-386 57. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Nat Biotech 17, 994-999 58. Yi, E. C., Li, X. J., Cooke, K., Lee, H., Raught, B., Page, A., Aneliunas, V., Hieter, P., Goodlett, D. R., and Aebersold, R. (2005) Proteomics 5, 380-387 59. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K., and Hamon, C. (2003) Anal Chem 75, 1895-1904 60. Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D. F., Burkhard, P. R., and Sanchez, J. C. (2008) Anal Chem 80, 2921-2931 61. Liu, H., Sadygov, R. G., and Yates, J. R., 3rd. (2004) Anal Chem 76, 4193-4201 62. Qian, W. J., Jacobs, J. M., Camp, D. G., 2nd, Monroe, M. E., Moore, R. J., Gritsenko, M. A., Calvano, S. E., Lowry, S. F., Xiao, W., Moldawer, L. L., Davis, R. W., Tompkins, R. G., and Smith, R. D. (2005) Proteomics 5, 572-584 63. Zhang, Y., Wen, Z., Washburn, M. P., and Florens, L. (2009) Anal Chem 81, 6317-6326 64. Zhou, J. Y., Schepmoes, A. A., Zhang, X., Moore, R. J., Monroe, M. E., Lee, J. H., Camp, D. G., Smith, R. D., and Qian, W. J. (2010) J Proteome Res 9, 5698-5704 65. Strittmatter, E. F., Ferguson, P. L., Tang, K., and Smith, R. D. (2003) JACS Mass Spectrom 14, 980-991 66. Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., and Yates, J. R., 3rd. (2003) Anal Chem 75, 2470-2477 67. Smith, R. D., Anderson, G. A., Lipton, M. S., Pasa-Tolic, L., Shen, Y., Conrads, T. P., Veenstra, T. D., and Udseth, H. R. (2002) Proteomics 2, 513-523 68. Monroe, M. E., Tolic, N., Jaitly, N., Shaw, J. L., Adkins, J. N., and Smith, R. D. (2007) Bioinformatics 23, 2021-2023 69. Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W. J., Webb-Robertson, B. J., Smith, R. D., and Lipton, M. S. (2006) J Proteome Res 5, 277-286 70. Polpitiya, A. D., Qian, W. J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp, D. G., 2nd, Anderson, G. A., and Smith, R. D. (2008) Bioinformatics 24, 1556-1558 71. Nakamura, T., and Lipton, S. A. (2009) Apoptosis 14, 455-468 72. Martinez-Ruiz, A., and Lamas, S. (2004) Cardiovasc Res 62, 43-52 73. Liu, L., Yan, Y., Zeng, M., Zhang, J., Hanes, M. A., Ahearn, G., McMahon, T. J., Dickfeld, T., Marshall, H. E., Que, L. G., and Stamler, J. S. (2004) Cell 116, 617-628 74. Behrendt, D., and Ganz, P. (2002) Am J Cardiol 90, 40L-48L 75. Xu, L., Eu, J. P., Meissner, G., and Stamler, J. S. (1998) Science 279, 234-237 76. Bogdan, C. (2001) Nat Immunol 2, 907-916 77. Karpuzoglu, E., and Ahmed, S. A. (2006) Nitric Oxide 15, 177-186 78. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001) Nat Cell Biol 3, 193-197 79. Lane, P., Hao, G., and Gross, S. S. (2001) Sci STKE 2001, re1 80. Lindermayr, C., Saalbach, G., and Durner, J. (2005) Plant Physiol 137, 921-930 81. Huang, B., Liao, C. L., Lin, Y. P., Chen, S. C., and Wang, D. L. (2009) J Proteome Res 8, 4835-4843 82. Yu, S. M., Hung, L. M., and Lin, C. C. (1997) Circulation 95, 1269-1277 83. Lopez-Farre, A., Sanchez de Miguel, L., Caramelo, C., Gomez-Macias, J., Garcia, R., Mosquera, J. R., de Frutos, T., Millas, I., Rivas, F., Echezarreta, G., and Casado, S. (1997) Am J Physiol 272, H760-768 84. Ziche, M., Morbidelli, L., Masini, E., Amerini, S., Granger, H. J., Maggi, C. A., Geppetti, P., and Ledda, F. (1994) J Clin Invest 94, 2036-2044 85. Braam, B., de Roos, R., Dijk, A., Boer, P., Post, J. A., Kemmeren, P. P., Holstege, F. C., Bluysen, H. A., and Koomans, H. A. (2004) Am J Physiol Heart Circ Physiol 287, H1977-1986 86. Chen, Y. J., Ku, W. C., Lin, P. Y., Chou, H. C., and Khoo, K. H. (2010) J Proteome Res 9, 6417-6439 87. Pai, C. H., Chiang, B. Y., Ko, T. P., Chou, C. C., Chong, C. M., Yen, F. J., Chen, S., Coward, J. K., Wang, A. H., and Lin, C. H. (2006) EMBO J 25, 5970-5982 88. Meng, T. C., Fukada, T., and Tonks, N. K. (2002) Molecular cell 9, 387-399 89. Comini, M. A., Dirdjaja, N., Kaschel, M., and Krauth-Siegel, R. L. (2009) Int J Parasitol 39, 1059-1062 90. Koenig, K., Menge, U., Kiess, M., Wray, V., and Flohe, L. (1997) J Biol Chem 272, 11908-11915 91. Crans, D. C., Kazlauskas, R. J., Hirschbein, B. L., Wong, C. H., Abril, O., and Whitesides, G. M. (1987) Method Enzymol 136, 263-280 92. Tsou, C. C., Tsai, C. F., Tsui, Y. H., Sudhir, P. R., Wang, Y. T., Chen, Y. J., Chen, J. Y., Sung, T. Y., and Hsu, W. L. (2010) Mol Cell Proteomics 9, 131-144 93. Barrett, W. C., DeGnore, J. P., Konig, S., Fales, H. M., Keng, Y. F., Zhang, Z. Y., Yim, M. B., and Chock, P. B. (1999) Biochemistry 38, 6699-6705 94. Sana, T. R. (2006) Mol Cell Proteomics 5, S356-S356 95. Ji, Y., Akerboom, T. P., Sies, H., and Thomas, J. A. (1999) Arch Biochem Biophys 362, 67-78 96. Russell, W. K., Park, Z. Y., and Russell, D. H. (2001) Anal Chem 73, 2682-2685 97. Kapp, E. A., Schutz, F., Connolly, L. M., Chakel, J. A., Meza, J. E., Miller, C. A., Fenyo, D., Eng, J. K., Adkins, J. N., Omenn, G. S., and Simpson, R. J. (2005) Proteomics 5, 3475-3490 98. Rajan, R., and Balaram, P. (1996) Int J Pept Protein Res 48, 328-336 99. Stark, G. R., Stein, W. H., and Moore, S. (1960) J Biol Chem 235, 3177-3181 100. Qin, W., Smith, J. B., and Smith, D. L. (1993) Biochim Biophys Acta 1181, 103-110 101. Norais, N., Tang, D., Kaur, S., Chamberlain, S. H., Masiarz, F. R., Burke, R. L., and Marcus, F. (1996) J Virol 70, 7379-7387 102. Volkin, D. B., Mach, H., and Middaugh, C. R. (1997) Mol Biotech 8, 105-122 103. Lippincott, J., and Apostol, I. (1999) Anal Biochem 267, 57-64 104. Tao, L., Jiao, X., Gao, E., Lau, W. B., Yuan, Y., Lopez, B., Christopher, T., RamachandraRao, S. P., Williams, W., Southan, G., Sharma, K., Koch, W., and Ma, X. L. (2006) Circulation 114, 1395-1402 105. Holmgren, A. (1979) J Biol Chem 254, 9627-9632 106. Holmgren, A. (1989) J Biol Chem 264, 13963-13966 107. Sengupta, R., Ryter, S. W., Zuckerbraun, B. S., Tzeng, E., Billiar, T. R., and Stoyanovsky, D. A. (2007) Biochemistry 46, 8472-8483 108. Mitchell, D. A., and Marletta, M. A. (2005) Nat Chem Biol 1, 154-158 109. Wang, Y., Liu, T., Wu, C., and Li, H. (2008) JACS Mass Spectrom 19, 1353-1360 110. Wu, C., Liu, T., Chen, W., Oka, S., Fu, C., Jain, M. R., Parrott, A. M., Baykal, A. T., Sadoshima, J., and Li, H. (2010) Mol Cell Proteomics 9, 2262-2275 111. Wu, C., Parrott, A. M., Fu, C., Liu, T., Marino, S. M., Gladyshev, V. N., Jain, M. R., Baykal, A. T., Li, Q., Oka, S., Sadoshima, J., Beuve, A., Simmons, W. J., and Li, H. (2011) Antioxid Redox Signal 15, 2565-2604 112. Mitchell, D. A., Morton, S. U., Fernhoff, N. B., and Marletta, M. A. (2007) Proc Natl Acad Sci U S A 104, 11609-11614 113. Gallogly, M. M., and Mieyal, J. J. (2007) Curr Opin Pharmacol 7, 381-391 114. Gaston, B. M., Carver, J., Doctor, A., and Palmer, L. A. (2003) Mol Interv 3, 253-263 115. Barglow, K. T., Knutson, C. G., Wishnok, J. S., Tannenbaum, S. R., and Marletta, M. A. (2011) Proc Natl Acad Sci U S A 108, E600-606 116. Hashemy, S. I., and Holmgren, A. (2008) J Biol Chem 283, 21890-21898 117. Nardai, G., Sass, B., Eber, J., Orosz, G., and Csermely, P. (2000) Arch Biochem Biophys 384, 59-67 118. Papp, E., Nardai, G., Soti, C., and Csermely, P. (2003) Biofactors 17, 249-257 119. Martinez-Ruiz, A., Villanueva, L., Gonzalez de Orduna, C., Lopez-Ferrer, D., Higueras, M. A., Tarin, C., Rodriguez-Crespo, I., Vazquez, J., and Lamas, S. (2005) Proc Natl Acad Sci U S A 102, 8525-8530 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64889 | - |
| dc.description.abstract | 麩胱甘肽 (GSH) 藉由其上的硫醇與蛋白質半胱胺酸 (cysteine) 的硫醇形成雙硫鍵稱為蛋白質的麩胱甘肽化 (S-glutathionylation) 。 S-glutathionylation 是一種可逆的蛋白質轉譯後修飾反應,能夠調控細胞內氧化還原平衡與保護細胞避免過度氧化。雖然目前有許多的方法可以偵測蛋白質的S-glutathionylation,但大部份的方法中並無法直接地獲得特定修飾位置的資訊。在本實驗室之前的研究中提出了利用將大腸桿菌的 Gsp synthetase 與 biotinyl-spermine 送入人類細胞中,以鑑定細胞內含有 S-glutathionylation 的蛋白質及其修飾位置。這個方法提供了有效率且可大規模分析相關的蛋白質體學。在本論文中,我們應用並最佳化此以 Gsp-biotin 為基礎的親合性純化修飾蛋白質,另外結合質譜分析,達到專一性的辨識 GSH 修飾的位置,以及對被 S-glutathionylation 的蛋白質進行定量。
在本論文中,我們使用蛋白質酪胺酸磷酸水解酶1B (protein tyrosine phosphatase 1B, PTP1B) 作為模式蛋白,以探討在蛋白質和胜肽層級上胰蛋白酶水解以及純化 GSH 修飾的蛋白質/胜肽的效率,建立及最佳化整個純化以及樣品前處理的步驟。目前為止,利用質譜分析 GSH-PTP1B 的極限最低可達 62 ng 。我們也使用 MS1 細胞株,一個在探討氧化還原研究中被廣泛使用的細胞株,來探討所建立的純化 GSH 修飾蛋白質/胜肽步驟的效率。於細胞外的條件下對 MS-1 細胞蛋白質進行 GSH 的修飾並結合質譜分析,目前辨識到了472條含有 GSH 修飾的胜肽以及其所屬的317個蛋白質。於辨識到的蛋白質中,其中有一些已有文獻廣泛的探討它們的 S-glutathionylaiton 。此外,在本研究所開發的方法中,不但可以專一性的辨識胜肽鏈上被 GSH 修飾的位置,還可以分辨同一條胜肽鏈上具有多個 cysteine ,哪一個 cysteine 是被 GSH 所修飾。 在免標定定量法的部分,我們結合高敏感性的質譜分析以及生物資訊學的工具 (IDEAL-Q) ,藉由估計萃取的離子層析圖譜 (extracted ion chromatography, XIC) 訊號峰底下的面積以估算各 S-glutathionylation 胜肽的量。我們在 MS-1 細胞的蛋白質中加入一序列不同量的 GSH-PTP1B ,在 LC-MS/MS 分析之後計算其被 S-glutathionylation 的三條胜肽鏈 (包括 HEASDFPC32(GSH)R, GSLKC121(GSH)AQYWPQK, ESGSLSPEHGPVVVHC215(GSH)SAGIGR ) 訊號峰下的面積。並以面積對濃度作圖以得到標準曲線,獲得定量的範圍落在 1.8 pmol 到 3.9 nmol 之間。 最後,在結合此一整套純化以及質譜分析的流程以及定量的方法之後,可以進一步探討 S-nitrosylation 與 S-glutathionylation 的關係,以及 S-nitrosylation 的穩定性與反應性。本論文不但提供一個有用的方法鑑定 S-glutathionylation 的蛋白質體,並可以深入探討細胞內氧化還原的調控機制。 | zh_TW |
| dc.description.abstract | Glutathione (GSH) forms a disulfide bond with cysteines of proteins, a dynamic way to regulate cellular redox balance and protect cells from oxidative damage. Although several methods are available to detect glutathionylated proteins, few of them provide direct assignment of modified cysteine residues. Previously we demonstrated an efficient method suitable for large-scale characterizations of glutathionylated proteins in vivo by introducing E.coli glutathionylspermindine synthetase (GspS) and biotinyl-spermine to human cells. In this thesis, we applied the method and optimized the conditions for the enrichment and subsequent mass spectrometric analysis to achieve site-specific GSH identification and quantitative proteomics. We utilized protein tyrosine phosphatase 1B (PTP1B), a well-known and extensively studied protein in redox biology, as a model to optimize the procedures of trypsin digestion and enrichment on both the protein and peptide levels. The detection limit of GSH-PTP1B was found to be 1.8 pmol. In MS-1 endothelial cells we have identified 472 unique glutathionylated peptides (mascot score ≥26, false decoy rate <2.21%) resulting from 317 glutathionylated proteins. Some of which were known to be glutathionylated. In addition, we are able to distinguish between S-glutathionylation and other cysteine modifications in one peptide. The label-free quantitative approach was carried out by integration of highly sensitive mass spectrometric techniques with bioinformatics tools (IDEAL-Q) to calculate the extracted ion chromatogram (XIC) of glutathionylation level on peptides. That is to say, we spiked a series of quantified PTP1B into MS-1 cell lysate and calculated the peak areas of three PTP1B peptides (including HEASDFPC32R, GSLKC121AQYWPQK, ESGSLSPEHGPVVVHC215SAGIGR ) during LC-MS/MS analyses. The range of quantitation is found between 1.8 pmol and 3.9 nmol. This developed method will be useful not only to identify and characterize glutathionylated proteins, but also to decipher how these identified cysteines are subjected to redox regulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:05:50Z (GMT). No. of bitstreams: 1 ntu-101-R99b46001-1.pdf: 4985963 bytes, checksum: 5047a7b82d557a043120dfa4719ffc6b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝 誌 I
縮寫表 II 中文摘要 IV Abstract VI 第一章 緒論 1 1.1 Glutathione 簡介 1 1.2 Glutathionylation 簡介 3 1.2.1 細胞內的硫醇與氧化還原狀態 3 1.2.2 Glutathionylation 的形成機制 4 1.3 簡介當前研究蛋白質 S-glutathionylation 的方法 7 1.3.1 以放射性同位素 35S 標定 GSH 7 1.3.2 利用 biotin 標定的 GSH 及其類似物研究蛋白質的 S-glutathionylation 8 1.3.3 利用 glutathione 的抗體進行蛋白質 S-glutathionylation 的分析 9 1.3.4 Glutaredoxin (Grx) 結合 biotin switch 法 9 1.3.5 Glutathione S-transferase (GST) 偵測法 10 1.3.6 GSH 或 GSH analogs 固定偵測法 11 1.3.7 總結現有方法之限制 11 1.4 Glutathionylspermidine synthetase/amidase (GspSA) 的簡介 11 1.5 常見結合液相層析-質譜分析 (liquid chromatography mass spectrometry) 的定量方法 12 1.5.1 穩定同位素標定定量法 (Stable isotope labeling quantiation) 13 1.5.1.1 Stable isotope labeling with amino acids in cell culture (SILAC) 13 1.5.1.2 Isotpe-coded affinity tag (ICAT) 14 1.5.1.3 Isobaric tags for relative and absolute quantitation (iTRAQ) 與 Tandem mass tags (TMT) 15 1.5.2 免標定定量法 (Label-free quantitation) 16 1.6 蛋白質的 S-nitrosylation 簡介 17 1.7 實驗動機 17 1.8 實驗流程圖 19 第二章 材料與方法 20 2.1 實驗藥品 20 2.2 表現質體 (Plasmid) 與菌種 20 2.2.1 表現質體與基因 20 2.2.2 菌種 20 2.3 細胞培養 20 2.3.1 細胞種類 20 2.3.2 培養液配製 21 2.3.3 繼代培養 21 2.4 利用化學酵素 (chemoenzymatic) 合成法合成與純化 Gsp-biotin 之化合物 21 2.4.1 Gsp-biotin 小分子的合成 21 2.4.2 ATP回復系統 (ATP regenerating system) 23 2.4.3 薄層層析法 (Thin layer chromatography, TLC) 23 2.4.4 Gsp-biotin 小分子的純化 24 2.4.5 Gsp-biotin 定性分析 24 2.4.5.1 以質譜儀鑑定其純度與分子量 24 2.4.5.2 以 Gsp amidase 對 Gsp-biotin 小分子進行定性分析 24 2.5 以快速蛋白層析儀 ( Fast protein liquid chromatography, FPLC ) 純化Gsp-biotin 小分子以及 His-tagged 蛋白質 25 2.5.1 利用陽離子交換樹脂管柱純化 Gsp-biotin 小分子 25 2.5.2 使用 Hitrap HP Chelating 管柱純化 His-tagged 蛋白質 25 2.6 蛋白質定量法 26 2.6.1 Bradford 定量法 26 2.6.2 BCA定量法 27 2.7 蛋白質膠體電泳分析 (Polyacryamide Gel Electrophoresis) 28 2.8 西方點墨法 (Western blot) 29 2.9 SDS PAGE染色法 30 2.9.1 Coomassie Blue染色法 30 2.9.2 銀染法 (Silver stain) 31 2.10 建立in vitro下純化Gsp-biotin S-thiolated 蛋白質或胜肽的方法 32 2.10.1 細胞裂解 (Cell lysis) 32 2.10.2 以Gsp-biotin在in vitro下對蛋白質進行標定 32 2.10.3 以 iodoacetamide (IAM) 對蛋白質 cysteine 上自由的硫醇進行遮蔽 33 2.10.4 去除過量 Gsp-biotin 的方法 33 2.10.4.1 分子量大小篩選管柱法 (Size exclusion column) 33 2.10.4.2 透析法 (Dialysis) 33 2.10.4.3 丙酮沉澱法 (Acetone precipitation) 33 2.10.5 以胰蛋白酶 (Trypsin) 將蛋白質切成胜肽 34 2.10.5.1 在尿素 (Urea) 作用下進行胰蛋白酶剪切 34 2.10.5.2 在三氟乙醇 (Trifluoroethanol) 作用下進行胰蛋白酶剪切 34 2.10.6 以 Streptavidin agarose bead 純化Gsp-biotin修飾的胜肽 35 2.10.7 利用Gsp amidase將純化出之胜肽上的Gsp-biotin水解成GSH 35 2.11 質譜分析 36 2.11.1 去鹽 (Desalting) 36 2.11.2 MALDI-TOF 分析 36 2.11.3 LC-ESI-MS/MS 分析 36 2.11.4 Collision energy 37 2.11.5 資料庫搜尋與數據分析 38 2.12 結合質譜技術之免標定定量法定量分析 39 2.12.1 質譜定量範圍分析 39 2.12.2 以免標定定量法進行質譜定量分析 39 2.13 細胞內蛋白質的亞硝基化反應 (nitrosylation) 40 第三章 實驗結果 41 Part I 在in vitro下合成與純化Gsp-biotin小分子的方法之建立 41 3.1.1 Gsp-biotin小分子的酵素合成法 41 3.1.2 Gsp-biotin小分子的純化 41 3.1.3 Gsp-biotin小分子的定性分析 42 Part II Gsp-biotin修飾之蛋白質/胜肽於質譜分析前之樣品處理方法 44 3.2.1 在in vitro下製備Gsp-biotin修飾的PTP1B 蛋白質 45 3.2.2 移除未反應的Gsp-biotin 條件測試 46 3.2.3 胰蛋白酶水解 (Trypsin digestion) 條件選擇 48 3.2.4 以streptavidin純化Gsp-biotin修飾蛋白質/胜肽的沖提 (elution) 條件之選擇 50 Part III 以質譜分析 Gsp-biotin 修飾胜肽序列特性 52 3.3.1 Gsp-biotin 修飾 PTP1B 的質譜分析 52 3.3.2 ESI-Q-TOF的裂片 (fragmentation) 能量選擇 55 3.3.3 以質譜分析 MS-1 內皮細胞中 in vitro S-glutathionylation 潛在蛋白質 58 Part IV 以質譜為基礎之免標定定量法之建立 60 3.4 以PTP1B作為免標定定量法 (label-free quantitation) 的偵測動態範圍(dynamic range) 分析 60 Part V 利用Gsp-biotin探討S-glutathionylation與S-nitrosylation的關係 64 3.5.1 Cysteine的nitrosylation可能會促進glutathionylation的發生 64 3.5.2 以Gsp-biotin 在 in vitro 下探討 S-nitrosylated cysteine (nitrosothiol) 的穩定性 (stability) 以及反應性 (reactivity) 65 第四章 討論 69 4.1 Gsp-biotin 小分子的合成原理與 ATP 回復系統 69 4.2 移除未修飾的Gsp-biotin 方法之探討 70 4.3 在TFE條件下可以幫助胰蛋白酶水解蛋白質 72 4.3 Gsp amidase無法有效地將受到修飾的蛋白質/胜肽從streptavidin上沖提下來 75 4.4 Cysteine 上硫醇基 S-nitrosylation 的穩定性與反應性 75 第五章 結論與未來展望 81 第六章 參考文獻 82 附錄一 In vitro 下Gsp-biotin 修飾蛋白/胜肽純化流程 91 附錄二 質譜鑑定 GSH 修飾胜肽理論分子量對照表 92 附錄三 Bio-rad protein assay kit (Cat. 500-0006) 物質相容性表 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 麩胱甘肽 | zh_TW |
| dc.subject | 化 | zh_TW |
| dc.subject | Gsp-biotin | zh_TW |
| dc.subject | 蛋白質體 | zh_TW |
| dc.subject | 純化 | zh_TW |
| dc.subject | 專一性的辨識 | zh_TW |
| dc.subject | 免標定定量法 | zh_TW |
| dc.subject | label-free quantitation | en |
| dc.subject | S-glutathionylation | en |
| dc.subject | Gsp-biotin | en |
| dc.subject | proteomics | en |
| dc.subject | enrichment | en |
| dc.subject | site-specific identification | en |
| dc.title | 建立蛋白質麩胱甘肽化特定位鑑定方法與結合質譜的免標定定量法策略 | zh_TW |
| dc.title | Site-specific Identification and Label Free Quantitation of S-glutathionylated Proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳玉如(Yu-Ju Chen),林俊成(Chun-Cheng Lin) | |
| dc.subject.keyword | 麩胱甘肽,化,Gsp-biotin,蛋白質體,純化,專一性的辨識,免標定定量法, | zh_TW |
| dc.subject.keyword | S-glutathionylation,Gsp-biotin,proteomics,enrichment,site-specific identification,label-free quantitation, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
