請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64885
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許晃雄 | |
dc.contributor.author | Li-Chiang Jiang | en |
dc.contributor.author | 姜禮強 | zh_TW |
dc.date.accessioned | 2021-06-16T23:05:22Z | - |
dc.date.available | 2012-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-06 | |
dc.identifier.citation | 吳政翰,2010:海洋大陸對季內震盪產生的地形效應:動力機制以及熱力與雲結構之研究。國立台灣大學大氣科學研究所博士論文。
羅安凱,2005:西北太平洋夏季季內振盪之多重尺度特性。國立臺灣大學大氣科學研究所碩士論文。 李明營,2003:地形與海溫對季內振盪東移的影響。國立台灣大學大氣科學研究所碩士論文。 翁春雄,2000 : 夏季季風海氣陸交互作用。國立台灣大學大氣科學研究所博士論文。 Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25-43. Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462. Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156-179. Lau, K. -M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: basic theory. J. Atmos. Sci., 44, 950–972. Wang, B., and H. Rui, 1990a: Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397-413. Hendon, H. H., and M. L. Salby, 1994: The Life Cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237. Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344-2367. Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation. J. Climate, 9, 2387-2403. Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low- frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341-2348. Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324-2340. Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823-839. Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 2086-2104. Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: the implications for intraseasonal oscillations. J. Atmos. Sci., 54, 2373-2386. C Zhang, M. Dong, S. Gualdi, H. Hendon and D. Maloney, 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn, 27, 573-592 Majdaa and Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. PNAS, 106, 8417-8422. Hsu, H.-H., C.-H. Weng, and C.-H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17, 727–743. Hsu, H.-H., and M. Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden-Julian Oscillation. J. Climate, 6, 795–809. Lin, J., B. E. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296–309. Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 2790–2809. C. Zhang, J. Ling, S. Hagos, and S. Lang, 2010: MJO Signals in Latent Heating: Results from TRMM Retrievals. Amer. Meteor. Soc., 67, 3488-3506. Inness, P. M., and J. M. Slingo, 2006: The interaction of the Madden–Julian oscillation with the Maritime Continent in a GCM. Quart. J. Roy. Meteor. Soc., 132, 1645–1667. Shibagaki, Y., T. Shimomai, T. Kozu, S. Mori, Y. Fujiyoshi, H. Hashiguchi, M.K. Yamamoto, S. Fukao, and M.D. Yamanaka, 2006: Multiscale aspects of convective systems associated with an intraseasonal oscillation over the Indonesian Maritime Continent. Mon. Wea. Rev., 134, 1682–1696. Miura, H., M. Satoh, T. Nasuno, A.T. Noda, and K. Oouchi, 2007: A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 1763. Madden, R. A., and P. R. Julian, 1972: Detection of global circulation cells in the tropical with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123. M. Kanamitsu, W. Ebisuzaki, J. Woollen, and G. L. POTTER, 2002: NCEP–DOE AMIP-II REANALYSIS (R-2). Amer. Meteor. Soc., 1631-1642. C-W Hung, X. Liu, and M. Yanai, 2004: Symmetry and Asymmetry of the Asian and Australian Summer Monsoons. Amer. Meteor. Soc., 17, 2414-2420. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277. C. Duchon, 1979: Lanczos Filtering in One and Two Dimensions. J. Applied Meteorology, 1016-1022. C. Wheeler, and H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Amer. Meteor. Soc.,132,1979-1931. Cheng-Han Wu, and Huang-Hsiung Hsu, 2009: Topographic Influence on the MJO in the Maritime Continent. Amer. Meteor. Soc.,22,5433-5448. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64885 | - |
dc.description.abstract | 季內震盪(Madden-Julian Oscillation, MJO)為熱帶地區重要的大氣現象。我們的研究分析發現,當在北半球冬季東移經海洋大陸時,它的環流結構、水氣通量輻散場、渦度場、深對流分布、以及相對應的熱力剖面等特性,都會被海洋大陸的高聳複雜地形所影響。
我們以EOF、一元線性迴歸和相位合成分析高解析度的CFSR和低解析度的NCEP R2再分析資料,結果顯示出因解析度的不同,所呈現的地形效應可以總結如下:(1) 隨著高度變化的垂直環流有很明顯地西傾結構產生。(2)在蘇門答臘和新幾內亞迎風面的邊緣,可以看到很強的下沉氣流,且在新幾內亞的背風處出現上升運動。(3)渦度場偶極現象的發生是很接近於海岸線和山脈的邊緣。(4)在新幾內亞的迎風面和背風面分別存在水氣輻散和輻合的現象,且很接近新幾內亞上狹長的山脈。(5)藉由地形的影響,非絕熱量的分布和剖面可以看到在迎風面和背風面的邊緣,存在著加熱和冷卻的作用、(6)非絕熱量緯向剖面中,因為大尺度環流的差異,導致CFSR於東經105-120度的非絕熱量明顯大於NCEP R2。(7)平均南緯10度至北緯5度和南緯15度和南緯5度的非絕熱量、相當位溫和水氣通量輻散場區域,發現前者有明顯的西傾結構、後者為正壓結構。因此從上面的分析結果可知,由於解析度不夠的NCEP R2,是無法完整反映出實際季內震盪的情況。 由此可知,正確解析地形的細部結構,對於季內震盪東移經過海洋大陸的模式模擬,有著重要的影響;而忽略地形影響的模式模擬,可能就不再適用於我們對季內震盪的進一步研究中。 | zh_TW |
dc.description.abstract | MJO is important atmosphere phenomenon in the tropics. This study demonstrates that during the passage of the MJO through the Maritime Continent in the boreal winter, the corresponding circulation structure, water vapor flux divergence, vorticity, convective systems, as well as consequential heating profiles, are redistributed via complex topographic effects from mountainous islands.
We analyzed the CFSR of high-resolution and the NCEP R2 of low-resolution reanalysis data by EOF, linear regression and phase composite Methods. Because the datas of different resolution, the effects could be summarized as follow. 1) Westward tilting of vertical circulation with height is much more evident. 2) Strong downdraft induced in the windward side of Sumatra and New Guinea and upward motion occurred in the lee side of New Guinea. 3) Vorticity dipoles occured near the coastline and mountain slopes. 4) Moisture divergence and convergence at the windward and leeside of New Guinea, respectively, and the div.-conv. pair is most evident near New Guinea, which is a large elongated mountainous island. 5) By topography affected, the Heating distribution and profile demonstrated that the anomalous heating and cooling in the windward and lee side, respectively. 6) Because the large-scale circulation is different, results CFSR apparent heat source is larger than NCEP R2. 7) The apparent heat source, equivalent potential temperature and water vapor flux divergence regional average of the westward tilting structure is evident at 10。S – 5。N, but at 15。S – 5。S, the regional average is not tilt structure. It is suggested that resolving the detailed topographic effects may play a key role in simulating realistic characteristics of the MJO in the Maritime Continent, while ignoring influence from tropical topography with an aqua-planet model may not be a proper approach for our further understanding of MJO. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:05:22Z (GMT). No. of bitstreams: 1 ntu-101-R99229001-1.pdf: 14442859 bytes, checksum: a5d224feb10538a06e1bdb011938a27d (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
誌謝 I 摘要 II ABSTRACT III 目錄 V 圖表說明 VII 第一章 前言 1 1.1 MJO的動力機制 1 1.2 MJO的雲結構和非絕熱量 4 1.3 在海洋大陸上複雜的海陸分布 4 1.4 研究動機與論文架構 6 第二章 資料與分析方法 7 2.1 使用資料介紹 7 2.2 資料處理 8 2.3 分析方法 8 2.3.1 經驗正交函數 8 2.3.2 相位合成 10 2.3.3 迴歸係數的統計檢定 ─ Student’s t-test 10 第三章 地形與對流、環流、水氣和渦度之間的關係 12 3.1 CFSR和NCEP R2解析度的差異 12 3.2深對流與水氣場的關係 13 3.3 環流與水氣通量輻散場和渦度場的關係 15 3.4 小結 17 第四章 垂直結構和雲的非絕熱量 19 4.1在3.5°N和5°S的緯向垂直剖面圖 19 4.2 在特殊經度上的經向剖面圖 21 4.3 非絕熱量的剖面圖 22 4.4 地形效應對MJO對流西傾結構的關係 24 4.5 小結 25 第五章 結論與討論 27 5.1 結論 27 5.2 延伸討論 29 參考文獻 30 附圖 34 | |
dc.language.iso | zh-TW | |
dc.title | 季內震盪與地形之間的交互作用 ─ 利用高解析資料 | zh_TW |
dc.title | The Interaction between the MJO and Topographic: Using High Resolution Data | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄒治華,余嘉裕 | |
dc.subject.keyword | 季內震盪,地形,線性迴歸,經驗正交函數,相位合成, | zh_TW |
dc.subject.keyword | Madden-Julian Oscillation,Topographic,Linear regression,EOF,Phase composite, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-07 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 14.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。