請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明亭(Ming-Ting Lee) | |
| dc.contributor.author | Yo-Chuen Lin | en |
| dc.contributor.author | 林又權 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:04:46Z | - |
| dc.date.available | 2013-08-15 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-06 | |
| dc.identifier.citation | Ammer AG, Kelley LC, Hayes KE, Evans JV, Lopez-Skinner LA, Martin KH, Frederick B, Rothschild BL, Raben D, Elvin P, Green TP, Weed SA (2009) Saracatinib Impairs Head and Neck Squamous Cell Carcinoma Invasion by Disrupting Invadopodia Function. Journal of Cancer Science & Therapy 1: 52-61
Ammer AG, Weed SA (2008) Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motility and the Cytoskeleton 65: 687-707 Angers-Loustau A, Hering R, Werbowetski TE, Kaplan DR, Del Maestro RF (2004) SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions. Molecular cancer research : MCR 2: 595-605 Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Research 66: 3034-3043 Ayala I, Baldassarre M, Caldieri G, Buccione R (2006) Invadopodia: a guided tour. European Journal of Cell Biology 85: 159-164 Ayala I, Baldassarre M, Giacchetti G, Caldieri G, Tete S, Luini A, Buccione R (2008) Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. Journal of Cell Science 121: 369-378 Bacac M, Stamenkovic I (2008) Metastatic cancer cell. Annual Review of Pathology 3: 221-247 Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R (2003) Dynamin participates in focal extracellular matrix degradation by invasive cells. Molecular Biology of the Cell 14: 1074-1084 Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology 2: 737-744 Bharti S, Inoue H, Bharti K, Hirsch DS, Nie Z, Yoon HY, Artym V, Yamada KM, Mueller SC, Barr VA, Randazzo PA (2007) Src-dependent phosphorylation of ASAP1 regulates podosomes. Molecular and Cellular Biology 27: 8271-8283 Bissell MJ, Hines WC (2011) Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine 17: 320-329 Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC (1999) An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440-4449 Bowden ET, Coopman PJ, Mueller SC (2001) Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods in Cell Biology 63: 613-627 Bowden ET, Onikoyi E, Slack R, Myoui A, Yoneda T, Yamada KM, Mueller SC (2006) Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Experimental Cell Research 312: 1240-1253 Brunton VG, Frame MC (2008) Src and focal adhesion kinase as therapeutic targets in cancer. Current Opinion in Pharmacology 8: 427-432 Buccione R, Caldieri G, Ayala I (2009) Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Reviews 28: 137-149 Byun S, Lee KW, Jung SK, Lee EJ, Hwang MK, Lim SH, Bode AM, Lee HJ, Dong Z (2010) Luteolin inhibits protein kinase C(epsilon) and c-Src activities and UVB-induced skin cancer. Cancer Research 70: 2415-2423 Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331: 1559-1564 Chen WT (1989) Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. The Journal of Experimental Zoology 251: 167-185 Chen WT, Chen JM, Parsons SJ, Parsons JT (1985) Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature 316: 156-158 Clark ES, Weaver AM (2008) A new role for cortactin in invadopodia: regulation of protease secretion. European Journal of Cell Biology 87: 581-590 Clark ES, Whigham AS, Yarbrough WG, Weaver AM (2007) Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Research 67: 4227-4235 Coppock HA, White A, Aplin JD, Westwood M (2004) Matrix metalloprotease-3 and -9 proteolyze insulin-like growth factor-binding protein-1. Biology of Reproduction 71: 438-443 Courtneidge SA (2012) Cell migration and invasion in human disease: the Tks adaptor proteins. Biochemical Society Transactions 40: 129-132 Courtneidge SA, Azucena EF, Pass I, Seals DF, Tesfay L (2005) The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. Cold Spring Harbor Symposia on Quantitative Biology 70: 167-171 Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW, Strongin AY (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Experimental Cell Research 263: 209-223 Destaing O, Block MR, Planus E, Albiges-Rizo C (2011) Invadosome regulation by adhesion signaling. Current Opinion in Cell Biology 23: 597-606 Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L, Yang J (2011) Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19: 372-386 Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2: 161-174 El Sayegh TY, Arora PD, Laschinger CA, Lee W, Morrison C, Overall CM, Kapus A, McCulloch CA (2004) Cortactin associates with N-cadherin adhesions and mediates intercellular adhesion strengthening in fibroblasts. Journal of Cell Science 117: 5117-5131 Ferriola PC, Cody V, Middleton E, Jr. (1989) Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochemical Pharmacology 38: 1617-1624 Fresco P, Borges F, Marques MP, Diniz C (2010) The anticancer properties of dietary polyphenols and its relation with apoptosis. Current Pharmaceutical Design 16: 114-134 Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nature reviews Cancer 3: 362-374 Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Research 68: 7247-7249 Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278: 16-27 Glossmann H, Presek P, Eigenbrodt E (1981) Quercetin inhibits tyrosine phosphorylation by the cyclic nucleotide-independent, transforming protein kinase, pp60src. Naunyn-Schmiedeberg's Archives of Pharmacology 317: 100-102 Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48: 1014-1022 Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39: 305-318 Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick P (2000) Protein complexes in transport vesicle targeting. Trends Cell Biol 10: 251-255 Hagiwara M, Inoue S, Tanaka T, Nunoki K, Ito M, Hidaka H (1988) Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases. Biochemical Pharmacology 37: 2987-2992 Harborne JB (1986) Nature, distribution and function of plant flavonoids. Progress in Clinical and Biological Research 213: 15-24 Higgs HN, Pollard TD (2001) Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annual Review of Biochemistry 70: 649-676 Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E, Jr., Lee MT (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. British Journal of Pharmacology 128: 999-1010 Hwang MK, Song NR, Kang NJ, Lee KW, Lee HJ (2009) Activation of phosphatidylinositol 3-kinase is required for tumor necrosis factor-alpha-induced upregulation of matrix metalloproteinase-9: its direct inhibition by quercetin. The International Journal of Biochemistry & Cell Biology 41: 1592-1600 Iida J, McCarthy JB (2007) Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-beta. Melanoma Research 17: 205-213 Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119: 1420-1428 Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo (Athens, Greece) 19: 895-909 Kandaswami C, Middleton E, Jr. (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Advances in Experimental Medicine and Biology 366: 351-376 Kang NJ, Shin SH, Lee HJ, Lee KW (2011) Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacology & Therapeutics 130: 310-324 Kao WT, Lin CY, Lee LT, Lee PP, Hung CC, Lin YS, Chen SH, Ke FC, Hwang JJ, Lee MT (2008) Investigation of MMP-2 and -9 in a highly invasive A431 tumor cell sub-line selected from a Boyden chamber assay. Anticancer Research 28: 2109-2120 Kedrin D, Rheenen J, Hernandez L, Condeelis J, Segall JE (2007) Cell Motility and Cytoskeletal Regulation in Invasion and Metastasis. Journal of Mammary Gland Biology and Neoplasia 12: 143-152 Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141: 52-67 Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nature Reviews Clinical Oncology 6: 587-595 Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK, Bowden GT, Bode AM, Lee HJ, Dong Z (2008) Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Research 68: 946-955 Lin CY, Tsai PH, Kandaswami CC, Chang GD, Cheng CH, Huang CJ, Lee PP, Hwang JJ, Lee MT (2011a) Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells. Molecular Cancer 10: 87 Lin CY, Tsai PH, Kandaswami CC, Lee PP, Huang CJ, Hwang JJ, Lee MT (2011b) Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Science 102: 815-827 Lin Y, Shi R, Wang X, Shen HM (2008) Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets 8: 634-646 Lin YS, Tsai PH, Kandaswami CC, Cheng CH, Ke FC, Lee PP, Hwang JJ, Lee MT (2011c) Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells. Cancer Science 102: 1829-1839 Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17: 107-117 Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67-68 Liu J, Yue P, Artym VV, Mueller SC, Guo W (2009) The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation. Molecular Biology of the Cell 20: 3763-3771 Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. The Journal of Cell Biology 139: 1861-1872 Lua BL, Low BC (2005) Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Letters 579: 577-585 Mader CC, Oser M, Magalhaes MA, Bravo-Cordero JJ, Condeelis J, Koleske AJ, Gil-Henn H (2011) An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Research 71: 1730-1741 Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS (2004) Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Molecular and Cellular Biology 24: 5269-5280 Muralidharan-Chari V, Hoover H, Clancy J, Schweitzer J, Suckow MA, Schroeder V, Castellino FJ, Schorey JS, D'Souza-Schorey C (2009) ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Research 69: 2201-2209 Murphy DA, Courtneidge SA (2011) The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nature Reviews Molecular Cell Biology 12: 413-426 Nakamura M, Miyamoto S, Maeda H, Ishii G, Hasebe T, Chiba T, Asaka M, Ochiai A (2005) Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability. Biochemical and Biophysical Research Communications 333: 1011-1016 Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. Journal of Clinical Oncology : official journal of the American Society of Clinical Oncology 18: 1135-1149 Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J (2009) Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. The Journal of Cell Biology 186: 571-587 Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Molecular Cell Biology 8: 221-233 Pan MH, Lai CS, Ho CT (2010) Anti-inflammatory activity of natural dietary flavonoids. Food & Function 1: 15-31 Patel AS, Schechter GL, Wasilenko WJ, Somers KD (1998) Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 16: 3227-3232 Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Critical Reviews in Biochemistry and Molecular Biology 27: 93-127 Pignatelli J, Tumbarello DA, Schmidt RP, Turner CE (2012) Hic-5 promotes invadopodia formation and invasion during TGF-beta-induced epithelial-mesenchymal transition. The Journal of Cell Biology 197: 421-437 Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angewandte Chemie International Edition 50: 586-621 Redondo-Munoz J, Escobar-Diaz E, Samaniego R, Terol MJ, Garcia-Marco JA, Garcia-Pardo A (2006) MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 108: 3143-3151 Ren G, Crampton MS, Yap AS (2009) Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motility and the Cytoskeleton 66: 865-873 Ren J, Guo W (2012) ERK1/2 Regulate Exocytosis through Direct Phosphorylation of the Exocyst Component Exo70. Developmental Cell 22: 967-978 Ridley Anne J (2011) Life at the Leading Edge. Cell 145: 1012-1022 Robinson S, Petty B, Dean B (1993) Enzyme, whole cell and invivo tumor-models to identify and assess inhibitors of pp60(c-SRC). International Journal of Oncology 2: 253-259 Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C (2000) EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clinical Cancer Research : an official journal of the American Association for Cancer Research 6: 3177-3182 Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochemical Pharmacology 83: 6-15 Schoumacher M, Goldman RD, Louvard D, Vignjevic DM (2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. The Journal of Cell Biology 189: 541-556 Schuuring E (1995) The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes--a review. Gene 159: 83-96 Schuuring E, Verhoeven E, Litvinov S, Michalides RJ (1993) The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell-substratum contact sites. Molecular and Cellular Biology 13: 2891-2898 Schuuring E, Verhoeven E, Mooi WJ, Michalides RJ (1992) Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7: 355-361 Seals DF, Azucena EF, Jr., Pass I, Tesfay L, Gordon R, Woodrow M, Resau JH, Courtneidge SA (2005) The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7: 155-165 Sibony-Benyamini H, Gil-Henn H (2012) Invadopodia: The leading force. European Journal of Cell Biology Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12: 112-120 Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137-146 Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology 17: 463-516 Stylli SS, Kaye AH, Lock P (2008) Invadopodia: at the cutting edge of tumour invasion. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 15: 725-737 Tan WF, Lin LP, Li MH, Zhang YX, Tong YG, Xiao D, Ding J (2003) Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. European Journal of Pharmacology 459: 255-262 Tatin F, Varon C, Genot E, Moreau V (2006) A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. Journal of Cell Science 119: 769-781 Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA (2007) Src phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci U S A 104: 11933-11938 Toth M, Chvyrkova I, Bernardo MM, Hernandez-Barrantes S, Fridman R (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochemical and Biophysical Research Communications 308: 386-395 Valastyan S (2012) Endogenous anticancer mechanisms: metastasis. Frontiers in Bioscience (Elite edition) 4: 1888-1897 Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147: 275-292 van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutation Research 728: 23-34 Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research 92: 827-839 Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clinical & Experimental Metastasis 23: 97-105 Weaver AM (2008) Cortactin in tumor invasiveness. Cancer Letters 265: 157-166 Weng CJ, Yen GC (2012) Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Reviews Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT (1991) Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Molecular and Cellular Biology 11: 5113-5124 Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS, Davis GE, Brooks PC (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. The Journal of Cell Biology 154: 1069-1079 Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J (2005a) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. The Journal of Cell Biology 168: 441-452 Yamaguchi H, Wyckoff J, Condeelis J (2005b) Cell migration in tumors. Current Opinion in Cell Biology 17: 559-564 Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Reviews 28: 15-33 Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes & Development 14: 163-176 Zern TL, Fernandez ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135: 2291-2294 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64870 | - |
| dc.description.abstract | 轉移是癌症致死最主要的一個原因。癌細胞要達成轉移必須經過非常複雜的過程,其中第一步就是癌細胞必須穿越週遭細胞外基質的阻礙。侵襲性偽足(Invadopodia)是位於細胞膜上的微小突起,用於侵入胞外基質;近來有相當多的文獻指出其為主要聚集基質金屬蛋白酶(MMP)並釋放而使細胞可穿越胞外基質的關鍵結構。為了研究轉移的機制,本實驗室將A431子宮頸上皮癌細胞(A431-P)利用Boyden chamber進行篩選,經連續三次穿膜篩選出擁有較高入侵轉移能力之A431第三代細胞(A431-III)。藉由兩株細胞之比較,證明了A431-III具有較高的入侵、移動能力,並且表現較多量的基質金屬蛋白酶;這樣的A431系統提供了一個好的模型以研究癌細胞之轉移入侵過程。在本實驗中,利用A431-P/III的比較發現具強轉移能力的A431-III比起母代細胞形成較多的侵襲性偽足結構以幫助入侵並分解基質。進一步研究這樣的差異主要來自Src蛋白磷酸酶較高的活化程度以及對下游Cortactin蛋白較多的磷酸化。另外也確認了基質金屬蛋白酶(MMP)對於侵襲性偽足的重要性,其中MMP-9是最主要參與的蛋白酶種類。
類黃鹼素(flavonoid)是一群廣泛存在於植物性食物中的天然化合物。根據已發表的報告指出其有相當多的生物活性,其中包括了抗癌及抗癌轉移。本實驗室先前選出兩個具最高抗癌潛能的類黃鹼素:木樨草素(Luteolin)與槲皮素(Quercetin),對癌細胞活性、生長及轉移具極佳抑制效果,並可抑制基質金屬蛋白酶分泌。鑒於侵襲性偽足對於癌細胞入侵的重要性,本研究證明了此兩種類黃鹼素可以有效抑制侵襲性偽足的產生及抑制細胞外基質的分解。其原因是由於類黃鹼素能抑制包括Src的活化及cortactin的磷酸化,進而抑制侵襲性偽足的形成以及聚集MMP之能力,最終達成抗轉移之結果。 | zh_TW |
| dc.description.abstract | Metastasis is the major cause of mortality in cancer patients and is a complex, multi-step process. Local invasion is the very first step in cancer metastasis. Invadopodia, which are actin-rich membrane protrusions of invasive cancer cells, are responsible for this invasive process. Invadopodia can extend into the extracellular matrix by recruiting matrix metalloproteinases (MMPs) and releasing them; invadopodia are now believed to be crucial structures that allow cancer cells to degrade and penetrate across the extracellular matrix (ECM). We previously obtained a highly invasive A431-III cell sub-line by using the Boyden chamber assay. The A431-III cell line exhibits higher invasive and migratory characteristics. In addition, A431-III exhibits elevated MMP-9 level and epithelial-mesenchymal transition (EMT) phenotype. Thus, this cell line is a reliable model for studying the mechanism of metastasis/invasion. Herein, we showed that A431-III exerted greater ability to form invadopodia leading to more degradation of the ECM than A431 cells. Cortactin, Src, and their phosphorylation have been reported as main regulator of invadopodia formation and function. Our data revealed that the phosphorylation of cortactin (Y421) and Src (Y418) were increased in A431-III cells. Since the degrading ability of invadopodia needs participation of proteases, we also showed the importance of MMPs, especially MMP-9, in this degrading event.
Flavonoids, a large group of plant secondary metabolites, are present in almost all-higher plants and display a wide range of pharmacodynamic properties including anti-inflammatory, anti-carcinogenic and anti-metastatic effects. We previously screened out two of the most potent flavonoids, luteolin and quercetin, which can suppress cancer invasion and MMPs secretion. Since it is known that the secretion of MMPs is targeted at invadopodia, our study showed that treating with luteolin and quercetin inhibited the formation of invadopodia in A431-III and decreased the ability of ECM degradation as well. Our data further revealed that these two flavonoids could inhibit Src kinase and the phosphorylation of cortactin, which in turn disrupt the formation of invadopodia. Followed by our previous study that flavonoids inhibited MMPs secretion, these results may explain in part how flavonoids affect MMPs secretion and metastasis potential. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:04:46Z (GMT). No. of bitstreams: 1 ntu-101-R99b46025-1.pdf: 4741055 bytes, checksum: a6d59e695fe24162529d6d3f13a82ee9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v ABBREVIATION vii LIST OF FIGURES ix LIST OF TABLES x Chapter 1 Introduction 1 1.1 Metastasis and invasion of cancer cell 1 1.2 Matrix metalloproteinase 3 1.3 Invadopodia 5 1.4 Cortactin 7 1.5 Flavonoids 8 1.6 Experimental rationale 10 Chapter 2 Materials and Methods 20 2.1 Materials 20 2.2 Cell culture 21 2.3 Preparation of cell lysate 21 2.4 Transfection of small interference RNA 21 2.5 Western blot 22 2.6 Reverse transcriptase polymerase chain reaction (RT-PCR) 22 2.7 Gelatin zymography 23 2.8 Immunofluorescence 24 2.9 Matrix degradation assay 24 2.10 Confocal microscopy 25 2.11 Statistical analysis 26 Chapter 3 Results 27 3.1 Invadopodia present in highly invasive A431-III subline 27 3.2 Molecular mechanism of higher invadopodia formation in A431-III cells 28 3.3 The proteolytic activity of MMPs was necessary for the matrix degrading function of invadopodia 29 3.4 MMP-9 was the major MMP for invadopodia in A431-III cells 30 3.5 Luteolin and quercetin impaired invadopodia formation and function in A431-III cells 31 3.6 Luteolin and quercetin inhibited Src kinase activity and suppressed MMPs secretion 32 Chapter 4 Discussion 45 REFERENCE 50 | |
| dc.language.iso | en | |
| dc.subject | Src蛋白磷酸酶 | zh_TW |
| dc.subject | 基質金屬蛋白酶 | zh_TW |
| dc.subject | 侵襲性偽足 | zh_TW |
| dc.subject | 癌症入侵 | zh_TW |
| dc.subject | 類黃鹼素 | zh_TW |
| dc.subject | flavonoids | en |
| dc.subject | invadopodia | en |
| dc.subject | MMPs | en |
| dc.subject | Src | en |
| dc.subject | cortactin | en |
| dc.subject | invasion | en |
| dc.title | 類黃鹼素對A431癌細胞的基質金屬蛋白酶分泌及侵襲性偽足形成能力之影響 | zh_TW |
| dc.title | Effects of Flavonoids on MMPs Secretion and Invadopodia Formation in Highly Invasive A431-III Epidermal Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),黃銓珍(Chang-Jen Huang),陳宏文(Hung-Wen Chen),黃彬彬(Ping-Ping Lee) | |
| dc.subject.keyword | 癌症入侵,侵襲性偽足,基質金屬蛋白酶,Src蛋白磷酸酶,類黃鹼素, | zh_TW |
| dc.subject.keyword | invasion,invadopodia,MMPs,Src,cortactin,flavonoids, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
