請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64862
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
dc.contributor.author | Hong-Ren Wu | en |
dc.contributor.author | 吳宏仁 | zh_TW |
dc.date.accessioned | 2021-06-16T23:03:50Z | - |
dc.date.available | 2017-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-07 | |
dc.identifier.citation | [1] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. Lang, “Vibration-to-electric energy conversion, ” Proceedings of the 1999 International Conference on Low Power Electronics and Design (ISLPED), pp
48-53, 1999. [2] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes, ” Computer Communications, vol. 26, pp. 1131-1144, 2003. [3] J. Ajitsaria, S. Y. Choe, D. Shen, and D. Kim, “Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, ” Smart Materials and Structures, vol. 16, pp. 447-454, 2007. [4] H. Hu, J. Cao, and Z. Cui, “Performance of a piezoelectric bimorph harvester with variable width, ” Journal of Mechanics, vol. 23, pp. 197-202, 2007. [5] J. Cho, M. Anderson, R. Richards, D. Bahr, and C. Richards, “Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling, ” Journal of Micromechanics and Microengineering, vol. 15, pp. 1797-1803, 2005. [6] J. Cho, M. Anderson, R. Richards, D. Bahr, and C. Richards, “Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment, ” Journal of Micromechanics and Microengineering, vol. 15, pp. 1804-1809, 2005. [7] S. Kim, W. W. Clark, and Q. M. Wang, “Piezoelectric energy harvesting with a clamped circular plate: analysis, ” Journal of Intelligent Material Systems and Structures, vol. 16, pp. 847-854, 2005. [8] L. Mateu and F. Moll, “Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts, ” Journal of Intelligent Material Systems and Structures, vol. 16, pp. 835-845,2005. [9] N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics, ” Micro, IEEE, vol. 21, pp. 30-42, 2001. [10] H. A. Sodano, G. Park, D. J. Leo, and D. J. Inman, “Model of piezoelectric power harvesting beam, ” American Society of Mechanical Engineers, New York, vol. 68, pp. 345-354, 2003. [11] S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics, ” Smart Materials and Structures, vol. 13, pp. 1131-1142, 2004. [12] A. Benjeddou, “Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, ” Computers & Structures, vol. 76, pp. 347-363, 2000. [13] C. De Marqui Junior, A. Erturk, and D. J. Inman, “An electromechanical finite element model for piezoelectric energy harvester plates, ” Journal of Sound and Vibration, vol. 327, pp. 9-25, 2009. [14] R. Paradies and B. Schläpfer, “Finite element modeling of piezoelectric elements with complex electrode configuration, ” Smart Materials and Structures, vol. 18, 025015, 2009. [15] Z. Meiling, E. Worthington, and J. Njuguna, “Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method, ” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 56, pp. 1309-1317, 2009. [16] N. G. Elvin and A. A. Elvin, “A Coupled Finite Element Circuit Simulation Model For Analyzing Piezoelectric Energy Generators, ” Journal of Intelligent Material Systems and Structures, vol. 20, pp. 587-595, 2009. [17] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing, ” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on , vol. 52, pp. 584-595, 2005. [18] Y. C. Shu, I. C. Lien, and W. J. Wu, “An improved analysis of the SSHI interface in piezoelectric energy harvesting, ” Smart Materials and Structures, vol. 16,pp. 2253-2264, 2007. [19] J. Brufau-Penella and M. Puig-Vidal, “Piezoelectric energy harvesting improvement with complex conjugate impedance matching, ” Journal of Intelligent Material Systems and Structures, vol. 20, pp. 597-608, 2009. [20] J. Liang and W. H. Liao, “Piezoelectric energy harvesting and dissipation on structural damping, ” Journal of Intelligent Material Systems and Structures, vol. 20, pp. 515-527, 2009. [21] J. Liang and W. H. Liao, “On the Energy Flow in Piezoelectric Energy Harvesting with SSHI Interface, ” In Proceedings of the 19th International Conference on Adaptive Structures and Technologies , 2008. [22] J. Liang and W. Liao, “Impedance Modeling and Analysis for Piezoelectric Energy Harvesting Systems, ” IEEE/ASME Transactions on Mechatronics, pp. 1-13. [23] J. Liang and W. H. Liao, “Energy flow in piezoelectric energy harvesting systems, ” Smart Materials and Structures, vol. 20, 015005, 2011. [24] J. M. Renno, M. F. Daqaq, and D. J. Inman, “On the optimal energy harvesting from a vibration source, ”Journal of Sound and Vibration, vol. 320, pp. 386-405, 2009. [25] Y. C. Shu and I. C. Lien, “Analysis of power output for piezoelectric energy harvesting systems, ” Smart Materials and Structures, vol. 15, pp. 1499-1512, 2006. [26] Y. C. Shu and I. C. Lien, “Efficiency of energy conversion for a piezoelectric power harvesting system, ” Journal of Micromechanics and Microengineering, vol. 16, pp. 2429-2438, 2006. [27] S. Shahruz, “Design of mechanical band-pass filters with large frequency bands for energy scavenging, ” Mechatronics, vol. 16, pp. 523-531, 2006. [28] S. Shahruz, “Design of mechanical band-pass filters for energy scavenging, ” Journal of Sound and Vibration, vol. 292, pp. 987-998, 2006. [29] S. Shahruz, “Design of mechanical band-pass filters for energy scavenging: Multi-degree-of-freedom models, ” Journal of Vibration and Control, vol. 14, pp. 753-768, 2008. [30] N. E. DUTOIT and L. W. BRIAN, “Performance of microfabricated piezoelectric vibration energy harvesters, ” Integrated Ferroelectrics, vol. 83, pp. 13-32, 2006. [31] H. Xue, Y. Hu, and Q. Wang, “Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies, ” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 55, pp. 2104-2108, 2008. [32] H. J. Song, Y. T. Choi, A. S. Purekar, and N. M. Wereley, “Performance evaluation of multi-tier energy harvesters using macro-fiber composite patches, ” Journal of Intelligent Material Systems and Structures, vol. 20, pp. 2077-2088, 2009. [33] I. C. Lien and Y. C. Shu, “Array of Piezoelectric Energy Harvesting by EquivalentImpedance Approach, ” Accepted for publication in Smart Materials and Structures, 2012. [34] I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu, and H. C. Lin, “Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting, ” Smart Materials and Structures, vol. 19, 125009, 2010. [35] J. E. Kim and Y. Y. Kim, “Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio With a Distributed Tip Mass, ” Journal of Vibration and Acoustics, vol. 133, 041010, 2011. [36] 徐士銘, “並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究, ” 台灣大學應用力學所研究所碩士論文, 2010. [37] Y. Yang and L. Tang, “Equivalent circuit modeling of piezoelectric energy harvesters, ”Journal of Intelligent Material Systems and Structures, vol. 20, pp. 2223-2235, 2009. [38] 連益慶, “陣列式壓電能量擷取系統在多種介面電路下之動態特性分析, ” 台灣大學應用力學所研究所博士論文, 2012. [39] 陳冠廷, “以有限元素法探討壓電振動能量擷取系統之機電行為, ”台灣大學應用力學所研究所碩士論文,2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64862 | - |
dc.description.abstract | 本論文提出一個「等效阻抗」想法為基礎之分析模型,用以研究壓電能量擷取系統。首先,將非線性整流電路,諸如標準整流電路、同步開關能量擷取介面電路(Parallel Synchronized Switch Harvesting in Inductor、Series Synchronized Switch Harvesting in Inductor),將其替換成相對應之等效負載阻抗。接下來,利用「阻抗匹配」的觀念,來獲得系統最佳功率輸出之條件,其結果顯示,當機械阻尼比等於電致阻尼比時,壓電能量擷取系統會有最佳的功率輸出。此外,對於SSHI電路而言,必會存在一個最佳等效阻抗使得弱力電耦合形式材料也會有最佳的功率輸出。
將「等效阻抗」分析模型運用於並聯陣列式壓電振動子搭配不同介面電路之分析,而我們所提出「等效負載阻抗」模型成功解決現有商用有限元素軟體,對於壓電元件搭配非線性整流電路之功率輸出時,數值計算上的困難。此外,也提供了對於系統參數差異之壓電振動子的分析方法。考慮並聯陣列式的系統,其中三個壓電振動子彼此系統參數有所差異,當為強力電耦合型式材料,可以很明顯發現標準電路搭配一個較大的最佳阻抗時,其功率的衰減併不明顯;然而,對於中、弱力電耦合型式材料,就會發現其功率輸出會有很明顯的衰減現象。接著,對於Parallel-SSHI電路而言,對功率輸出有著明顯的改善,當為中力電耦合型式材料,Parallel-SSHI電路呈現著寬頻之效果;對於弱力電耦合型式材料則呈現功率提升之效果。 最後,我們提出一個修改的方式,由最初3D有限元素模擬中所獲得之功率輸出,可由2D模組(Plane-stress、Plane-strain)之模擬結果的二次方來近似,其呈現令人滿意之結果。 | zh_TW |
dc.description.abstract | The present thesis proposes a model based on the idea of equivalent impedance to study piezoelectric energy harvesting. First, several nonlinear interface circuits, including the standard and parallel-/series-SSHI (Synchronized Switch Harvesting on Inductor) electronics, are replaced by several equivalent load impedances. Next, using the concept of impedance matching, the optimal power and the conditions to achieve it are derived. It is shown that the optimal condition refers to the case that electrically induced damping ratio is equal to the mechanical damping ratio. In addition, there always exists an optimal load such that the optimal condition is achieved for an SSHI system with weakly coupled electromechanical coupling.
The model of equivalent load impedance is applied to the case of multiple piezoelectric oscillators connected in parallel and attached to distinct interface circuits. As the present commercial finite element softwares are unable to simulate the electrical response of power generators connected to nonlinear interface circuits, our proposed approach successfully resolves such a numerical difficulty. In addition, the parametric study provides a way for analyzing the system response under various imperfect conditions. To see it, we consider a model problem consisting of three oscillators with different system parameters. For a system with strong electromechanical coupling, it is remarkably found that the drop in power is not significant for the standard system operated at the large optimal load. However, there is a significant drop in harvested power for the medium and weak electromechanical coupling systems. However, the parallel-SSHI system exhibits a significant improvement in bandwidth for the case of medium electromechanical coupling and boots harvested power significantly for the case of weak electromechanical coupling. Finally, we present a modification such that harvested power obtained originally from a 3D finite element simulation is approximated by quadratic interpolation of results obtained by 2D plane-stress and plane-strain simulations. It shows satisfactory results. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:03:50Z (GMT). No. of bitstreams: 1 ntu-101-R99543061-1.pdf: 3221831 bytes, checksum: 90266cbc62b775ce8ac0a663f10a48c1 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII CHAPTER 1. 導論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 5 1-4 論文架構 6 CHAPTER 2. 壓電振動子模型 7 2-1 壓電效應(PIEZOELECTRIC EFFECT) 7 2-1-1 正壓電效應 7 2-1-2 逆壓電效應 8 2-2 線性壓電材料之本構方程式 8 2-3 壓電懸臂複合樑之模型建立 10 2-4 壓電懸臂複合樑之等效電路模型 14 CHAPTER 3. 壓電能量擷取系統之整流等效阻抗模型 17 3-1 壓電振動子在介面電路下之分析 17 3-2 壓電懸臂樑之整流等效阻抗模型 20 3-2-1 標準介面電路之等效阻抗模型 20 3-2-2 Parallel-SSHI介面電路之等效阻抗模型 22 3-2-3 Series-SSHI介面電路之等效阻抗模型 24 3-2-4 文獻比較 27 3-3 共軛匹配簡介 31 3-3-1 共軛匹配 32 3-3-2 電致阻尼比 33 3-4 並聯陣列式振動子之等效阻抗模型 37 3-4-1 標準介面電路之等效阻抗模型 37 3-4-2 Parallel-SSHI介面電路之等效阻抗模型 38 3-4-3 Series-SSHI介面電路之等效阻抗模型 39 3-5 實例操作 41 CHAPTER 4. 材料參數差異對陣列式系統之數值模擬 48 4-1 材料參數 48 4-2 誤差模擬 49 4-2-1 強力電耦合型式(Strong Coupling) 50 4-2-2 中力電耦合型式(Medium Coupling) 53 4-2-3 弱力電耦合型式(Weak coupling) 56 CHAPTER 5. 二維近似三維數值模擬之模型 60 5-1 頻率推導 60 5-2 功率輸出的猜測 64 5-3 頻率與功率輸出模擬比較 65 5-3-1 壓電懸臂樑之共振頻率分析 65 5-3-2 功率輸出模擬比較 67 CHAPTER 6. 結論與展望 71 6-1. 結論 71 6-2. 展望 73 參考文獻 75 附錄一 80 附錄二 81 附錄三 82 附錄四 83 附錄五 84 附錄六 85 | |
dc.language.iso | zh-TW | |
dc.title | 以有限元素法模擬並聯陣列式壓電振動子之機電行為 | zh_TW |
dc.title | Finite Element Simulation of an Array of Piezoelectric Energy Harvesters Connecting in Parallel | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林憲陽,黃育熙 | |
dc.subject.keyword | 壓電振動能量擷取系統,有限元素法,等效阻抗,標準整流電路,同步開關能量擷取介面電路, | zh_TW |
dc.subject.keyword | Piezoelectric energy harvesting system,Finite element method,equivalent load impedances,Standard and Parallel-/Series-SSHI interface., | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。