Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64855
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智(Hsin-Chih Lin)
dc.contributor.authorMing-Lun Changen
dc.contributor.author張明倫zh_TW
dc.date.accessioned2021-06-16T23:02:20Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation1. H.E. El-Feky, N.H. Helal and M.R. Negem, J. Chem. Eng. Mater. Sci. Vol. 1(1) (2010) 8-22.
2. C.Y. Chen, E.Y. Chang, L. Chang and S.H. Chen, IEEE Trans. Elect. Device Vol. 48, No.6 (2001) 1033-1036.
3. H.J. Kim, J.Y. Lee, K.W. Paik, K.W. Koh, J. Won, S. Choe, J. Lee, J.T. Moon and Y.J. Park, IEEE Trans. Comp. Pack. Technol. Vol. 26, No. 2 (2003) 367-374.
4. SEMI, 工研院 IEK (2012/05).
5. C.J Ting, F.Y. Chang, C.F. Chen and C.P. Chou, J. Micromech. Microeng. 18 (2008) 075001.
6. X.C. Shan, T. Ikehara, Y. Murakoshi and R. Maeda, Sens. Actuators A 119 (2005) 433-440.
7. L.P. Yeo, S.H. Ng, Z.F. Wang, Z.P. Wang and N. F. de Rooij, Microelectronic Engineering 86 (2009) 933 -936.
8. Xuechuan Shan, L. Jin, Y.C. Soh and C. W. Lu, Microsyst. Technol. 16 (2010) 1393-1398.
9. E. Wu, V. Menon, W. Geddie and Y. Sun, Biomed. Microdevices 13 (2011) 393-401.
10. S.R. Nugen, P.J. Asiello and A.J. Baeumner, Microsyst. Technol. 15 (2009) 477-483 .
11. H. Becker, W. Dietz and P. Dannberg, Proc. Micro Total Analysis Systems (Kluwer, 1998) 253-256.
12. C.W. Tsao, T.Y. Chen, W.Y. Woon and C.J. Lo, Microsyst. Technol. 18 (2012) 713-722.
13. M. Honkanen, M. Vippola and T. Lepisto, J. Mater. Sci. 42 (2007) 4684-4691.
14. C.W. Tan, A.R. Daud and M.A. Yarmo, Appl. Surf. Sci. 191 (2002) 67-73.
15. G. Plascencia, T. Utigard and T. Marin, J. Metals, January (2005) 80-84.
16. S. Kaimori, T. Nonaka and A. Mizoguchi, IEEE Trans. Adv. Packag. Vol. 29, No. 2 (2006) 227-231.
17. T. Uno, K. Kimura and T. Yamada, Proc. Microelectron. Packag Conf. EMPC (2009) 1-10.
18. Xiaoge Gregory Zhang, “Electrochemistry of Silicon and its oxide”, Kluwer Academic/Plenum Publishers, N.Y. 2001, pp. 49-50.
19. J.W. Klaus, A.W. Ott, J.M. Johnson, and S.M. George, Appl. Phys. Lett. 70 (1997) 1092-1094.
20. J.D. Ferguson, E.R. Smith, A.W. Weimer, and S.M. George, J. Electrochem. Soc. 151 (2004) G528-G535.
21. G. Dingemans, C.A.A. van Helvoirt, D. Pierreux, W. Keuning, and W.M.M. Kessels, J. Electrochem. Soc. 159 (2012) H277-H285.
22. G. Dingemans, C.A.A. van Helvoirt, M.C.M. van de Sanden, and W.M.M. Kessels, ECS Transactions, 35 (4) 191-204 (2011).
23. Steven M. George, Chem. Rev. 110 (2010) 111-131.
24. J.H. Kim, J.B. Choi, B.J. Shin and K.H. Park, Semicond. Sci. Technol. 18 (2003) 158-162.
25. K. Eriguchi, M. Kamei, K. Okada, H. Ohta and K. Ono, Lecture Notes in Electrical Engineering, Vol. 2021(4) (2010) 97-106.
26. A.P. Ghosh, L.J. Gerenser, C.M. Jarman and J.E. Fornalik, Appl. Phys. Lett. 86 (2005) 223503.
27. A.W. Ott, K.C. McCarley, J.W. Klaus, J.D. Way and S.M. Geroge, Appl. Surf. Sci. 107 (1996) 128-136.
28. G.S. Higashi and C.G. Fleming, Appl. Phys. Lett. 55 (1989) 1963-1965.
29. S. J. Yun, K.H. Lee, J. Skarp, H.R. Kim and K.S. Nam, J. Vac. Sci. Technol. A 15 (1997) 2993-2997.
30. M.D. Groner, F.H. Fabreguette, J.W. Elam and S.M. Geroge, Chem. Mater. 16 (2004) 639-645.
31. L. Zhang, H.C. Jiang, C. Liu, J.W. Dong and P. Chow, J. Phys D: Appl. Phy. 40 (2007) 3707-3713.
32. N.D. Hoivik, J.W. Elam, R.J. Linderman, V.M. Bright, S.M. George and Y.C. Lee, Sens. Actuators A 103 (2003) 100-108.
33. B.S. Lim, A. Rahtu and R.G. Gordon, Nature Materials Vol. 2 (2003) 749-754.
34. C.M. Tanner and Y.C. Perng, Appl. Phys. Lett. 91 (2007) 203510.
35. P. Majumder, R. Katamreddy and C. Takoudis, Electrochem. Solid-State Lett. 10(10) (2007) 291-295.
36. S. Jakschik, U. Schroeder, T. Hecht, G. Dollinger, A. Bergmaier and J.W. Bartha, Mater. Sci. Technol. B107 (2004) 251-254.
37. P.F. Carcia, R.S. McLean, M.D. Groner, A.A. Dameron and S.M. George, J. Appl. Phys. 106 (2009) 023533.
38. C.X. Shan, X. Hou and K.L. Choy, Surf. Coat. Technol. 202(2008) 2399-2402.
39. P.C. Wang, Y.T. Shih, M.C. Lin, H.C. Lin, M.J. Chen and K.M. Lin, Thin Solid Films 518 (2010) 7501-7504.
40. A.C. Dillon, A.W. Ott, J.D. Way and S.M. George, Surf. Sci. 322 (1995) 230-242.
41. R.L. Puurunen, J. Appl. Phys. 97 (2005) 121301.
42. R.A. Wind and S.M. George, J. Phys Chem. A 114 (2010) 1281-1289.
43. J.A. Venables, “Introduction to Surface and Thin Film Processes”, 1st ed., Cambridge University Press, 2000, pp. 145-147.
44. R. Matero, A. Rahtu, M. Ritala, M. Leskela and T. Sajavaara, Thin Solid Films 368 (2000) 1-7.
45. S.K. Kim, S.W. Lee, C.S. Hwang, Y.S. Min, J.Y. Won and J. Jeong, J. Electrochem. Sco. 153 (5) (2006) F69-F76.
46. Y. Widjaja and C.B. Musgrave, Appl. Phys. Lett. 80 (2002) 3304-3306.
47. A.W. Ott, J.W. Klaus, J.M. Jonson and S.M. George, Thin Solid Films 292 (1997) 135-144.
48. S. Gieraltowska, D. Sztenkiel, E. Guziewicz, M. Godlweski, G. Luka, B.S. Witkowski, L. Wachnicki, E. Lusakowska, T. Dietl and M. Sawicki, Acta Physica Polonica A Vol. 119 (2011) 692-695.
49. G. Faraci, S.L. Rosa, A.R. Pennisi, Y. Hwu and G. Margaritondo, L. Appl. Phys. 78(5) (1995) 4091-4098.
50. J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Cor., 1992, pp 55.
51. B. Diaz, E. Harkonen, J. Światowska, V. Maurice, A. Seyeux, P. Marcus and M. Ritala, Corros. Sci. 53, Issue 6 (2011) 2168-2175.
52. V. Kottler, M.F. Gilles and A.E.T. Kuiper, J. Appl. Phys. Vol. 89, No.6 (2001) 3301-3306.
53. Y.S. Min, Y.J. Cho and C.S. Hwang, Chem. Mater. 17 (2005) 626-631.
54. H.L. Lu, Y.B. Li, M. Xu, S.J. Ding, L. Sun, W. Zhang, L.K. Wang, Chin. Phys. Lett. Vol. 23 (2006) 1929-1931.
55. J.A. McCormick, K.P. Rice, F.P. Alan, W. Weimer and S.M. George, Chem. Vap. Deposition 13 (2007) 491-498.
56. Q. Peng, X.Y. Sun, J.C. Spagnola, G.K. Hyde, R.J. Spontak and G.N. Parsons, Nano Lett. Vol.7, No.3 (2007) 719-722.
57. S.J. Bull, J. Vac. Sci. Technol. A Vol.30, No.1 (2012) 0A160.
58. ASM 06671G, Hardness Testing, 2nd ed., ASM International, 1999.
59. J.E. Lee, H.J. Kim and D.E. Kim, J. Mech. Sci. Technol. 24 (2010) 97-101.
60. M.K. Tripp, C. Stampfer, D.C. Miller, T. Helbling, C.F. Herrmann, C. Hierold, K. Gall, S.M. George and V.M. Bright, Sens. Actuators A 130-131 (2006) 419-429.
61. A. Carrado, M.A. Taha, N.A. El-Mahallawy, J. Coat. Technol. Res. 7 (2010) 515-519.
62. G.M. Pharr, Mater. Sci. Eng. A235 (1998) 151-159.
63. W.C. Oliver and G.M. Pharr, J. Mater. Res. Vol. 7, No. 6, (1992) 1564-1583.
64. M.S. Bobji and S.K. Biswas, J. Mater. Res. Vol. 13, No. 11, (1998) 3227-3233.
65. S.H. Chen, L. Liu and T.C. Wang, Surf. Coat. Technol. 191 (2005) 25-32.
66. C.F. Herrmann, F.W. Delrio, S.M. George and V.M. Bright, Proc. of SPIE, Bellingham, WA,Vol. 5715 (2005) pp. 159-166.
67. J.N. Ding, X.F. Wang, N.Y. Yuan, C.L. Li Y.Y. Zhu and B. Kan, Surf. Coat. Technol. 205 (2011) 2846-2851.
68. D.C. Miller, R.R. Foster, S.H. Jen, J.A. Bertrand, S.J. Cunningham, A.S. Morris, Y.C. Lee, S.M. George and M.L. Dunn, Sens. Actuators A 164 (2010) 58-67.
69. K. Tapily, J.E. Jakes, D.S. Stone, P. Shrestha, D. Gu, H. Baumgart and A.A. Elmustafa, J. Electrochem. Sco. 155 (2008) H545-H551.
70. T.Z. Kattamis and M. Chen, Surf. Coat. Technol. 70 (1994) 43-48.
71. T. Ishizaki , I. Shigematsu and N. Saito, Surf. Coat. Technol. 203 (2009) 2288–2291.
72. S.J. Bull, Tribology International Vol. 30, No. 7, (1997) 491-498.
73. P.J. Burnett and D.S. Rickerby, Thin Solid Films 154 (1987) 403-416.
74. Y. Zhu, K. Mimura, J.W. Lim, M. Isshiki and Q. Jiang, Metall. Mater. Trans. A, Vol. 37 (2006) 1231-1237.
75. J.P. Wang and W.D. Cho, ISIJ Int. Vol. 49, No. 12 (2009) 1926-1931.
76. T.N. Rhodin, Jr., J. Am. Chem. Soc. 72(11) (1951) 3143-3146.
77. T.N. Rhodin, Jr., J. Am. Chem. Soc. 72(11) (1950) 5102-5106.
78. Y. Zhu, K. Mimura and M. Isshiki, Oxid. Met. Vol. 62, No. 314 (2004) 207-222.
79. E. Langereis, M. Creatore, S. B. S. Heil, M.C.M. Van de Sanden and W.M.M. Kessels, Appl. Phys. Lett. 89 (2006) 081915.
80. P.F. Carcia, R.S. McLean, M.D. Groner, A.A. Dameron and S.M. George, J. Appl. Phys. 106 (2009) 023533.
81. P.F. Carcia, R.S. McLean, M.H. Reilly, M.D. Groner and S.M. George, Appl. Phys. Lett. 89 (2006) 031915.
82. S. Hegedus, P.F. Carcia, R.S. McLean and B. Culver, Proc. 35th IEEE Photovoltaics Specialists Conference (Honolulu, 2010).
83. M. Copel, E. Cartier, E.P. Gusev, S. Guha, N. Bojarczuk and M. Poppeller, Appl. Phys. Lett. Vol. 78, No. 18 (2001) 2670-2672.
84. M. Liu, C. He, L.Q. Zhu, Q. Gang, G.H. Li and L.D. Zhang, Appl. Surf. Sci. 252 (2006) 6206-6211.
85. P. Majumder, R. Katamreddy and C. Takoudis, J. Crystal Growth 309 (2007) 12-17.
86. M.D. Groner, S.M. George, R.S. McLean and P.F. Carcia, Appl. Phys. Lett. 88 (2006) 051907.
87. S.E. Potts, L. Schmalz, M. Fenker, B. Diaz, J. Swiatowska, V. Maurice, A. Seyeux, P. Marcus, G. Radnoczi, L. Toth, and W.M.M. Kessels, J. Electrochem. Soc. 158 (5) (2011) C132-C138.
88. B. Diaz, E. Harkonen, V. Maurice, J. Światowska, A. Seyeux, Mikko Ritala and Philippe Marcus, Electrochimica Acta 56 (2011) 9609- 9618.
89. Y. Zhang, D. Seghete, A. Abdulagatov, Z. Gibbs, A. Cavanagh, R. Yang, S. George and Y.C. Lee, Surf. Coat. Technol. 205 (2011) 3334-3339.
90. Y. Zhang, J.A. Bertrand, R. Yang, S.M. George and Y.C. Lee, Thin Solid Films 517 (2009) 3269-3272.
91. Y. Zhang, Y.Z. Zhang, D.C. Miller, J.A. Bertrand, S.H. Jen, R. Yang, M.L. Dunn, S.M. George, Y.C. Lee, Thin Solid Films 517 (2009) 6794-6797.
92. P. F. Carcia, R.S. McLean and M.H. Reilly, App. Phys. Lett. 97 (2010) 221901.
93. M.D. Groner, J.W. Elam, F.H. Fabreguette and S.M. George, Thin Solid Films 413 (2002) 186-197.
94. Joint Committee on Powder Diffraction Standards (JCPDS), International Centre for Diffraction Data, 1997.
95. J.T. Kim, C.G. Choi and H.K. Sung, ETRI Journal, Vol. 27, No. 1, (2005) 122-125.
96. J. Benick1, B. Hoex2, G. Dingemans2, W.M.M. Kessels2, A. Richter1, M. Hermle1 and S. W. Glunz, Proc. 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009) 21-25.
97. W. Wang and S.A. Soper, “Bio-MEMS Technologies and Applications”, CRC Press NW, 2007, pp. 131.
98. P. Schneider, C. Steitz, K.H. Schafer and C. Ziegler, Phys. Status. Solidi. A 206, No. 3, (2009) 501-507.
99. E.G. West, “Copper and Its Alloys”, 1st ed., Ellis Horwood Lit., NY, 1982, pp. 15.
100. JESD22-A104D, “Temperature Cycling”, JEDEC Solid State Technology Association, 2009, PP. 10.
101. Helen Cui, RAMS (2005) 556-560.
102. JESD22-A102D, “Accelerated Moisture Resistance-Unbiased Autoclave”, JEDEC Solid State Technology Association, 2010, PP. 2.
103. A. Zarrouk, I. Warad, B. Hammouti, A. Dafali, S.S. Al-Deyab and N. Benchat, Int. J. Electrochem. Sci. 5 (2010) 1516-1526.
104. S. Murali and N. Srikanth, IEEE Trans. Electron. Packag. Manufact. Vol. 29, No. 3, (2006) 179-183.
105. R. Winston Revie, “Uhlig’s corrosion handbook”, 2nd ed., Wiley-interscience, 2006, pp. 683.
106. J. Kim and T.W. Kim, JOM Vol. 61, No. 6, (2009) 17-22.
107. T.W. Scharf, S.V. Prasad, M.T. Dugger, P.G.Kotula, R.S. Goeke and P.K. Grubbs, Acta Mater. 54 (2006) 4731-4743.
108. T.M. Mayer, J.W. Elam, S.M. George, P.G. Kotula and R.S. Goeke, Appl. Phys. Lett. Vol. 82, No. 17 (2003) 2883-2885.
109. H.M. Liao, R.N.S. Sodhi and T.W. Coyle, J. Vac. Sci. Rechnol. A 11(5) (1993) 2681-2686.
110. D.S. Finch, T. Oreskovic, K. Ramadurai, C.F. Herrmann, S.M. George and R.L. Mahajan, J. Biomed. Mater. Res. A (2008) 100-106.
111. S.H. Jen, J.A. Bertrand and S.M. George, J. App. Phys. 109 (2011) 084305.
112. P.V. Patil, D.M. Bendale, R.K. Puri and Vijaya Puri, Thin Solid Films 288 (1996) 120-124.
113. C.L. Chang and D.Y. Wang, Diamond Relat. Mater. 10 (2001) 1528-1534.
114. M. Furuno, K. Kitajima, Y. Tsukuda and T. Akamatus, Adv. Mater. Reach. Vol. 126-128 (2010) 609-614.
115. S. Nakao, J. Kim, J. Choi, S. Miyagawa, Y. Miyagawa and M. Ikeyama, Surf. Coat. Technol. 201 (2007) 8334-8338.
116. J. Valli and U. Makela, Wear 115 (1987) 215-221.
117. A. Krella and A. Czyzniewski, Wear 263 (2007) 395-401.
118. H. Wang and W. Montasser, J. Therm. Spray Technol. Vol. 2(1) (1993) 31-34.
119. S.P. Yu, H.C. Wang, M.C. Wang, M.H. Hon, J. Mater. Sci. 37 (2002) 185-190.
120. W.L. Jang, T.C. Chiu and K.L. Lin, Thin Solid Films 519 (2011) 5539-5543.
121. C. Scheu, M. Gao, S.H. Oh, G. Dehm, S. Klein, A.P. Tomsia and M. Ruhle, J. Mater. Sci. 41 (2006) 5161-5168.
122. S. H. Ng A Z. F. Wang, Microsyst. Technol. 15 (2009) 1149-1156.
123. S. Chen, L. Brown, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, X. Li, C. Magnuson, A. Velamakanni, R. R. Piner, J. Park and R. S. Ruoff, ACS. Nano. 5(2) (2011) 1321-1327.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64855-
dc.description.abstract本研究係使用原子層沉積(atomic layer deposition, ALD)技術於純銅表面成長氧化鋁(Al2O3)薄膜,以各種精密儀器有系統地分析該薄膜的特性,同時以不同的實驗來測試該薄膜對純銅的保護能力。實驗結果顯示,利用ALD技術可順利在純銅表面成長Al2O3薄膜,膜厚可由ALD的循環數(cycle)精確地控制。在適當的製程條件下,當薄膜的化學越成份接近藍寶石的化學計量比,而其折射率、硬度、楊氏模數、附著力也越高,這些變化與薄膜內氫氧基(-OH)的含量有關。然而純銅出現少許局部被攻擊的現象,原因在於薄膜內的缺陷。該缺陷的型態屬於局部較鬆散的結構並扮演外界氧或水氣往內擴散的潛在路徑,底材表面上外來的異質顆粒及ALD製程中殘留的-OH*則是形成缺陷的主因。zh_TW
dc.description.abstractIn this study, atomic layer deposition (ALD) technique has been employed to prepare Al2O3 thin films onto pure copper. The characteristics of the films were systematically investigated using many sophisticated instruments. Additionally, the protection performance of the films was evaluated by different trials. The analysis results show the Al2O3 thin films are well deposited on pure copper The film thicknesses can be precisely controlled by numbers of ALD cycle. The chemical compositions of the films prepared by appropriate ALD condition are close to the stoichiometric composition of sapphire. The refractive index, hardness, Young’s modulus, and adhesion strength of the films are better too. These behaviors are attributed to the feature of containing less -OH groups in the films. However, few tiny and local attacks of the coated coppers are observed, which can be explained by the defects within the films. The features of the defects are locally looser microstructures that play the roles of potential diffusion paths for oxygen or moisture in the environment. The extrinsic heterogeneous particles and residual -OH* during ALD process are the main reasons which induce the defects.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:02:20Z (GMT). No. of bitstreams: 1
ntu-101-D96527019-1.pdf: 12616352 bytes, checksum: 8d2c0defc78a966e28e8a609e37ca826 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要……………………………………………………………………………....i
英文摘要………………………………………………………………………………ii
第一章 簡介與研究動機……..……………….…………………………......….……1

第二章 文獻回顧…………..…………………………………………………………6
2.1原子層沉積技術 (Atomic layer deposition technique) ……….…………….6
2.1.1 簡介..………….………………………………………….…...……...6
2.1.2 TMA/H2O ALD薄膜的成長機制……………………..……….…….7
2.1.3 ALD薄膜成長速率…………………………………………………..8
2.1.4製程溫度對ALD薄膜成長速率的影響…………………….……..10
2.2 ALD-Al2O3薄膜的理化性質………………………………….….….……..12
2.2.1 薄膜的結晶性………………………………………………………12
2.2.2 薄膜的鍵結狀態與化學組成………………………...…………….13
2.3 ALD-Al2O3薄膜的機械性質…..……...…………………….….…………..14
2.3.1奈米壓痕技術與薄膜硬度、楊氏模數…………………..….……..14
2.3.2薄膜附著力…............................................................……………….16
2.4 披覆層提升底材的抗氧化性…...........……………………………………18
2.4.1純銅的氧化行為…………………………………………………….18
2.4.2 Al2O3薄膜作為擴散障礙層(diffusion barrier)….…………….……19
2.5 ALD-Al2O3薄膜的缺陷(defect)..……………….…………………….……19
第三章 實驗方法與步驟...………………………………………………..………...45
3.1 試片準備……….………………………………...……….………..……....45
3.2實驗流程…………………….…………………..………………...…….….46
3.3 ALD 製程………………….……………………………………...………..46
3.4薄膜性質分析…….…………………..……………………...........………..47
3.4.1 膜厚分析………….…………………………...……………………47
3.4.2 均勻覆蓋性(conformity)分析………………………………...……47
3.4.3 微結構分析……………………………….…………………..…….47
3.4.4 化學組成分析…………………………..…….…………………….48
3.4.5表面粗糙度分析…………………………..…….…………………..49
3.4.6物理性質分析…………………………..…….……………………..49
3.4.7 機械性質分析……………………………………………………....50
3.5薄膜保護能力試驗….………………………….…………………..….…...51
3.5.1 氧化試驗……………………………………………………………51
3.5.2加速溫度循環試驗(Accelerated temperature cycling test)試驗…....52
3.6應用分析………………………..…………………………………………..53
3.6.1 IC樣品壓力鍋試驗(Pressure Cooker Test,PCT) ………………….53
3.6.2 IC樣品浸泡試驗..…………………………………………………..54
3.6.3銅模仁氧化試驗與加速溫度循環試驗 …………………………...55

第四章 結果與討論- ALD-Al2O3薄膜的性質………………...…………………...65
4.1薄膜之成長特性………………………...…………..………………..…….65
4.1.1薄膜厚度與GPC(growth per cycle).………………………...……....65
4.1.2底材溫度對GPC的影響……..…..…………………………...……65
4.1.3底材表面狀態對薄膜厚度的影響….………………………………65
4.1.4薄膜的均勻覆蓋性………………………………………………….66
4.2 薄膜之結晶性………….……………………..……………...…………….73
4.2.1一般XRD與GIXD數據之差異………..…………….……………73
4.2.2 GIXD分析 ..................……………………………………………..73
4.2.3 TEM分析………………………………………..………….…….....74
4.3薄膜之化學組成……..……….…………………...………………..............79
4.3.1 XPS分析………………...…………………………………………..79
4.3.2 SIMS縱深分析………………………………………………….......80
4.3.3 AES縱深分析………………………...………………………….….80
4.4 薄膜之物理性質………..…...………………………………….………….90
4.4.1 表面接觸角………….………………..…………………..………...90
4.4.2 折射率……………………...………….………………....................90
4.5薄膜之機械性質……………………………………………………………94
4.5.1薄膜內的殘留應力……………………………………………….....94
4.5.2薄膜硬度與楊氏模數……………………….………………............95
4.5.2.1奈米壓痕測量結果………………….………………...........95
4.5.2.2底材溫度對硬度與楊氏模數的影響………….…...............96
4.5.3薄膜附著力分析…….………………………………………………97
4.5.3.1臨界下壓力的判定…………………………………………97
4.5.3.2底材溫度對附著力的影響…………………………………98
4.5.4磨耗實驗…….……...….……….……….…………...…….………100
第五章 結果與討論-ALD-Al2O3薄膜的保護能力….…………..…….………….121
5.1 氧化試驗……………………………....…...………………….………….121
5.1.1純銅之抗氧化能力的確認………………………………………...121
5.1.2不同厚度之Al2O3薄膜的保護能力……….….…………………..123
5.1.3抗氧化機制的討論………………………………………………...124
5.2 ALD-Al2O3薄膜缺陷的討論..……………………….…………………...138
5.2.1缺陷的型態……………………………..…….…………………....138
5.2.2外來異質顆粒與底材表面粗糙度對缺陷形成的影響…………...139
5.3加速溫度循環試驗(Accelerated temperature cycling test)……………….145
5.3.1薄膜的完整性.…………………..…………………………….…...145
5.3.2薄膜附著力的變化……………...………………………………....145
5.3.3薄膜附著力耐久性的評估……………………………………..….146
5.4應用分析…………………………………………………………………..152
5.4.1 Al2O3薄膜對IC銅打線的保護………………………….……..…152
5.4.2 Al2O3薄膜對銅模仁的保護…….………....……….…………...…153
第六章 結論………………………………………………………………………..160
參考文獻……………………………………………………………………………162
dc.language.isozh-TW
dc.subject氧化鋁zh_TW
dc.subject原子層沉積zh_TW
dc.subject純銅zh_TW
dc.subject氫氧基zh_TW
dc.subject-OH groupen
dc.subjectAl2O3en
dc.subjectpure copperen
dc.subjectALDen
dc.title以原子層沉積技術所製作之氧化鋁薄膜性質及其對純銅保護性之研究zh_TW
dc.titleA study on the properties of ALD-deposited Al2O3 films and their protective capability for pure copperen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisor陳敏璋(Miin-Jang Chen)
dc.contributor.oralexamcommittee林招松,許正勳,蕭健男
dc.subject.keyword原子層沉積,氧化鋁,純銅,氫氧基,zh_TW
dc.subject.keywordALD,Al2O3,pure copper,-OH group,en
dc.relation.page167
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
12.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved