Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏溪成(Shi-Chern Yen)
dc.contributor.authorChao-Hsiang Changen
dc.contributor.author張朝翔zh_TW
dc.date.accessioned2021-06-16T23:01:46Z-
dc.date.available2026-02-02
dc.date.copyright2021-02-22
dc.date.issued2020
dc.date.submitted2021-02-03
dc.identifier.citation1. Dunn, B., H. Kamath, and J.-M. Tarascon, 'Electrical energy storage for the grid: a battery of choices', Science, 2011. 334(6058): p. 928-935.
2. Liu, J., J. G. Zhang, Z. Yang, J. P. Lemmon, C. Imhoff, G. L. Graff, L. Li, J. Hu, C. Wang, and J. Xiao, 'Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid', Advanced Functional Materials, 2013. 23(8): p. 929-946.
3. Weydanz, W. J., M. Wohlfahrt-Mehrens, and R. A. Huggins, 'A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries', Journal of Power Sources, 1999. 81-82: p. 237-242.
4. Yao, Y., M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, 'Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life', Nano Lett, 2011. 11(7): p. 2949-54.
5. Michan, A. L., B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, and B. L. Lucht, 'Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation', Chemistry of Materials, 2016. 28(22): p. 8149-8159.
6. Zhang, S. S., 'A review on electrolyte additives for lithium-ion batteries', Journal of Power Sources, 2006. 162(2): p. 1379-1394.
7. Aurbach, D., K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries', Electrochimica Acta, 2002. 47(9): p. 1423-1439.
8. Abraham, K. M., 'Prospects and Limits of Energy Storage in Batteries', The Journal of Physical Chemistry Letters, 2015. 6(5): p. 830-844.
9. Kenji, F., K. Kazuhiko, I. Kennichi, and Y. Masaki, 'Foliated natural graphite as the anode material for rechargeable lithium-ion cells', Journal of Power Sources, 1997. 69(1): p. 165-168.
10. Lü, X., B. Xia, C. Liu, Y. Yang, and H. Tang, TiO2-based nanomaterials for advanced environmental and energy-related applications. 2016, Hindawi.
11. Nazri, G.-A. and G. Pistoia, 'Lithium batteries: science and technology'. 2008: Springer Science Business Media.
12. Franklin, R. E., 'Crystallite Growth in Graphitizing and Non-Graphitizing Carbons', Proceedings of the Royal Society of London Series A, 1951. 209: p. 196-218.
13. McDowell, M. T., S. W. Lee, W. D. Nix, and Y. Cui, '25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries', Advanced Materials, 2013. 25(36): p. 4966-4985.
14. Obrovac, M. N. and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction', Electrochemical and Solid-State Letters, 2004. 7(5): p. A93-A96.
15. Park, C.-M., J.-H. Kim, H. Kim, and H.-J. Sohn, 'Li-alloy based anode materials for Li secondary batteries', Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
16. Liu, W.-R., Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, and N.-L. Wu, 'Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive', Journal of Power Sources, 2005. 140(1): p. 139-144.
17. Xu, Y. H., G. P. Yin, and P. J. Zuo, 'Geometric and electronic studies of Li15Si4 for silicon anode', Electrochimica Acta, 2008. 54(2): p. 341-345.
18. Evanoff, K., A. Magasinski, J. Yang, and G. Yushin, 'Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries', Advanced Energy Materials, 2011. 1(4): p. 495-498.
19. Favors, Z., W. Wang, H. H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan, and C. S. Ozkan, 'Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries', Sci Rep, 2014. 4: p. 5623.
20. Goriparti, S., E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, 'Review on recent progress of nanostructured anode materials for Li-ion batteries', Journal of Power Sources, 2014. 257: p. 421-443.
21. Magasinski, A., P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, 'High-performance lithium-ion anodes using a hierarchical bottom-up approach', Nat Mater, 2010. 9(4): p. 353-358.
22. Pan, L., H. Wang, D. Gao, S. Chen, L. Tan, and L. Li, 'Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries', Chem Commun (Camb), 2014. 50(44): p. 5878-5880.
23. Song, J., S. Chen, M. Zhou, T. Xu, D. Lv, M. L. Gordin, T. Long, M. Melnyk, and D. Wang, 'Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries', J. Mater. Chem. A, 2014. 2(5): p. 1257-1262.
24. Wang, D., M. Gao, H. Pan, J. Wang, and Y. Liu, 'High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization', Journal of Power Sources, 2014. 256: p. 190-199.
25. Yi, R., F. Dai, M. L. Gordin, S. Chen, and D. Wang, 'Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries', Advanced Energy Materials, 2013. 3(3): p. 295-300.
26. Wilson, A. M., B. M. Way, J. R. Dahn, and T. v. Buuren, 'Nanodispersed silicon in pregraphitic carbons', Journal of Applied Physics, 1995. 77(6): p. 2363-2369.
27. Holzapfel, M., H. Buqa, W. Scheifele, P. Novák, and F.-M. Petrat, 'A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion', Chemical Communications, 2005(12): p. 1566-1568.
28. Liu, N., H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, 'A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes', Nano Letters, 2012. 12(6): p. 3315-3321.
29. Liu, N., Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, and Y. Cui, 'A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes', Nature Nanotechnology, 2014. 9(3): p. 187-192.
30. Wang, Z., Z. Mao, L. Lai, M. Okubo, Y. Song, Y. Zhou, X. Liu, and W. Huang, 'Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries', Chemical Engineering Journal, 2017. 313: p. 187-196.
31. Botte, G. G., R. E. White, and Z. Zhang, 'Thermal stability of LiPF6–EC:EMC electrolyte for lithium ion batteries', Journal of Power Sources, 2001. 97-98: p. 570-575.
32. Andersson, A., 'Surface phenomena in Li-ion batteries', Doctoral dissertation, Acta Universitatis Upsaliensis, 2001.
33. Michan, A. L., M. Leskes, and C. P. Grey, 'Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products', Chemistry of Materials, 2016. 28(1): p. 385-398.
34. Horowitz, Y., H.-L. Han, P. N. Ross, and G. A. Somorjai, 'In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions - A Sum Frequency Generation Vibrational Spectroscopy Study', Journal of the American Chemical Society, 2016. 138(3): p. 726-729.
35. Ti-Chiang Chueh, 'Carbon-Coated Silicon Nano-Composites as Negative Electrodes for Lithium Batteries and Electrically Conductive Adhesives Containing Ag-Plated Graphite Particles', Doctor Dissertation, National Taiwan University, 2014.
36. Jow, T. R., K. Xu, O. Borodin, and M. Ue, 'Electrolytes for lithium and lithium-ion batteries'. Vol. 58. 2014: Springer.
37. Dalavi, S., P. Guduru, and B. L. Lucht, 'Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes', Journal of The Electrochemical Society, 2012. 159(5): p. A642-A646.
38. Li, Y., G. Xu, Y. Yao, L. Xue, S. Zhang, Y. Lu, O. Toprakci, and X. Zhang, 'Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive', Journal of Solid State Electrochemistry, 2013. 17(5): p. 1393-1399.
39. Etacheri, V., O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, 'Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes', Langmuir, 2012. 28(1): p. 965-976.
40. Chieh-min Lo, 'The Preparation and Applications of Carbon-Coated Silicon Composites as Negative Electrodes for Lithium Cells', Master Thesis, National Taiwan University, 2015.
41. Jin-Rong Kuo, 'Carbon-Silicon Composites Prepared from Recycled Silicon and Lignocellulose for Negative Electrodes of Li-ion Batteries', Master Thesis, National Taiwan University, 2017.
42. Wei-Yan Chen, 'Binder and Carbon Coating Effects on Cycling Performances of Recycled-Silicon Negative Electrode for Lithium Ion Batteries', Master Thesis, National Taiwan University, 2018.
43. Jun-Yan Chen, 'Conductive Agent Effects on Performances of Carbon-Silicon Negative Electrodes and Characteristic Studies of Ceramic Polymer Solid Electrolyte for Lithium Ion Batteries', Master Thesis, National Taiwan University, 2019.
44. Gao, G., L.-Z. Cheong, D. Wang, and C. Shen, 'Pyrolytic carbon derived from spent coffee grounds as anode for sodium-ion batteries', Carbon Resources Conversion, 2018. 1(1): p. 104-108.
45. Li, W., M. Chen, and C. Wang, 'Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries', Materials Letters, 2011. 65(23-24): p. 3368-3370.
46. Li, Y., Y.-S. Hu, H. Li, L. Chen, and X. Huang, 'A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries', Journal of Materials Chemistry A, 2016. 4(1): p. 96-104.
47. Tenhaeff, W. E., O. Rios, K. More, and M. A. McGuire, 'Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material', Advanced Functional Materials, 2014. 24(1): p. 86-94.
48. Buerschaper, R. A., 'Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures', Journal of Applied Physics, 1944. 15(5): p. 452-454.
49. Lu, X., G. Wu, Q. Xiong, H. Qin, Z. Ji, and H. Pan, 'A novel microstructural reconstruction phenomenon and electrochemical performance of cactus-like SnO2/carbon composites as anode materials for Na-ion batteries', Electrochimica Acta, 2017. 245: p. 587-596.
50. Zhang, J., H. Cao, X. Tang, W. Fan, G. Peng, and M. Qu, 'Graphite/graphene oxide composite as high capacity and binder-free anode material for lithium ion batteries', Journal of Power Sources, 2013. 241: p. 619-626.
51. Zhang, L., M. Zhang, Y. Wang, Z. Zhang, G. Kan, C. Wang, Z. Zhong, and F. Su, 'Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries', Journal of Materials Chemistry A, 2014. 2(26): p. 10161-10168.
52. Smits, F. M., Measurement of Sheet Resistivities with the Four-Point Probe, in Semiconductor Devices: Pioneering Papers. 1991, WORLD SCIENTIFIC. p. 183-190.
53. Majoul, N., S. Aouida, and B. Bessaïs, 'Progress of porous silicon APTES-functionalization by FTIR investigations', Applied Surface Science, 2015. 331: p. 388-391.
54. Porcher, W., S. Chazelle, A. Boulineau, N. Mariage, J. P. Alper, T. Van Rompaey, J. S. Bridel, and C. Haon, 'Understanding Polyacrylic Acid and Lithium Polyacrylate Binder Behavior in Silicon Based Electrodes for Li-Ion Batteries', Journal of The Electrochemical Society, 2017. 164(14): p. A3633-A3640.
55. Li, N.-W., Y. Shi, Y.-X. Yin, X.-X. Zeng, J.-Y. Li, C.-J. Li, L.-J. Wan, R. Wen, and Y.-G. Guo, 'A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes', Angewandte Chemie International Edition, 2018. 57(6): p. 1505-1509.
56. Nsib, F., N. Ayed, and Y. Chevalier, 'Selection of dispersants for the dispersion of carbon black in organic medium', Progress in Organic Coatings, 2006. 55(4): p. 303-310.
57. Chen, T., Q. Zhang, J. Pan, J. Xu, Y. Liu, M. Al-Shroofy, and Y.-T. Cheng, 'Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries', ACS Applied Materials Interfaces, 2016. 8(47): p. 32341-32348.
58. Chen, Y., Y. Qi, and B. Liu, 'Polyacrylic Acid Functionalized Nanographene as a Nanocarrier for Loading and Controlled Release of Doxorubicin Hydrochloride', Journal of Nanomaterials, 2013. 2013: p. 1-8.
59. Yang, J., L. Zhang, T. Zhang, X. Wang, Y. Gao, and Q. Fang, 'Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries', Electrochemistry Communications, 2018. 87: p. 22-26.
60. Xu, Y., G. Yin, Y. Ma, P. Zuo, and X. Cheng, 'Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source', Journal of Materials Chemistry, 2010. 20(16): p. 3216-3220.
61. Guo, J., A. Sun, X. Chen, C. Wang, and A. Manivannan, 'Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy', Electrochimica Acta, 2011. 56(11): p. 3981-3987.
62. Tarnopolskiy, V., J. Kalhoff, M. Nádherná, D. Bresser, L. Picard, F. Fabre, M. Rey, and S. Passerini, 'Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes', Journal of Power Sources, 2013. 236: p. 39-46.
63. Charton, C., J. Santos-Peña, A. Biller, E. De Vito, H. Galiano, M. L. Digabel, and D. Lemordant, 'Reactivity of Succinic Anhydride at Lithium and Graphite Electrodes', Journal of The Electrochemical Society, 2017. 164(7): p. A1454-A1463.
64. Evans, J., C. A. Vincent, and P. G. Bruce, 'Electrochemical measurement of transference numbers in polymer electrolytes', Polymer, 1987. 28(13): p. 2324-2328.
65. Newman, J. and T. W. Chapman, 'Restricted diffusion in binary solutions', AIChE Journal, 1973. 19(2): p. 343-348.
66. Stewart, S. G. and J. Newman, 'The Use of UV/vis Absorption to Measure Diffusion Coefficients in LiPF[sub 6] Electrolytic Solutions', Journal of The Electrochemical Society, 2008. 155(1): p. F13-F16.
67. Brissot, C., M. Rosso, J. N. Chazalviel, and S. Lascaud, 'Dendritic growth mechanisms in lithium/polymer cells', Journal of Power Sources, 1999. 81-82: p. 925-929.
68. Lundgren, H., M. Behm, and G. Lindbergh, 'Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF6in EC:DEC', Journal of The Electrochemical Society, 2014. 162(3): p. A413-A420.
69. Kufian, M. Z. and S. R. Majid, 'Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive', Ionics, 2010. 16(5): p. 409-416.
70. Song, J., M.-H. Ryou, B. Son, J.-N. Lee, D. J. Lee, Y. M. Lee, J. W. Choi, and J.-K. Park, 'Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries', Electrochimica Acta, 2012. 85: p. 524-530.
71. Valøen, L. O. and J. N. Reimers, 'Transport properties of LiPF6-based Li-ion battery electrolytes', Journal of The Electrochemical Society, 2005. 152(5): p. A882-A891.
72. Kondo, K., M. Sano, A. Hiwara, T. Omi, M. Fujita, A. Kuwae, M. Iida, K. Mogi, and H. Yokoyama, 'Conductivity and Solvation of Li+ Ions of LiPF6 in Propylene Carbonate Solutions', The Journal of Physical Chemistry B, 2000. 104(20): p. 5040-5044.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64849-
dc.description.abstract本論文利用碳黑殘餘物搭配光電產業的切削矽粒子碎片,製備高效能的鋰離子電池負極材料。首先碳黑與矽粒子會先在聚丙烯酸水溶液中進行分散混和,再進入氦氣高溫燒結程序形成碳包覆良好的碳/矽複合材料。透過聚丙烯酸的黏合作用,碳黑與矽粒子會被緻密的黏合,可以有效的提升複合材料的電容量循環表現以及電容量保持率。
此外本研究也對於電解液改質進行探討,透過碳酸亞乙烯酯及順丁烯二酸酐兩種添加劑的使用,可使得鋰鹽在電解液中表現出更佳的鋰離子導電度、鋰離子遷移數以及有效擴散係數,其歸因於兩種添加劑會在電極介面上生成聚合物形式的固態電解質介面膜(SEI)膜,可以阻擋電解液進一步在與矽粒子生成副反應,並提升電容量表現。而相較於順丁烯二酸酐在電池內部所生成的多孔洞性SEI膜,碳酸亞乙烯酯則會表現出更緊實、更穩定的鈍化保護層,因此在電池循環表現上顯得更加出色,更有效的提升電池壽命。
本研究製備1.5 mg/cm2重的負極材料,搭配具有碳酸亞乙烯酯的電解液,在進行51圈的充放電測試後可提供1923.0 mAh/gSi的第51圈比電容量,以及65.5%的51圈電容量保持率。經由適當的添加試劑,廢棄的回收物也能改造成為高價值的商品,是循環經濟的最佳體現。本論文透過回收廢棄的碳黑與矽粒子,製備成為高效能碳/矽複合材料,期待為鋰離子電池提供一個新的矽碳負極材料。
zh_TW
dc.description.abstractHigh capacity silicon-carbon composite materials have been prepared and investigated from carbon black residues and recycled silicon powders. The carbon black residues and recycled silicon particles are well blended in the appropriate particle dispersing solution, DI water containing dispersant, and are then pyrolyzed to prepare high performance Si-C composite materials. Such solution can provide spectacular carbon binding capability on silicon powders, thus enhancing overall capacity and capacity retention of the electrodes.
Electrolyte additives vinylene carbonate (VC) and maleic anhydride (MA) are employed for improving cells performances. Electrolytes of Lithium hexafluorophosphate (LiPF6) in ethylene carbonate/diethyl carbonate (EC/DEC) with VC or MA additives are used to form polymeric solid electrolyte interface (SEI) around silicon particles surface, which can prevent recycled silicon electrodes from excess pulverization and improve cell performances. Instead of highly porous SEI structures with MA additive, VC would construct denser and more sturdy protection layers on silicon anodes, thereby further promoting LIBs cycle performances.
The negative electrode prepared in this study at mass loading of 1.5 mg/cm2 with 1.2 M LiPF6 in EC/DEC containing 8 wt.% of VC as electrolyte solution delivers 51st cycle delithiation specific capacity 1923.0 mAh/gSi and 51st cycle retention as 65.5% at current rate of 1000 mAh/g. With appropriate additives, the low-cost recycled materials can contribute to high performance, and provide new ground for lithium ion batteries.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:01:46Z (GMT). No. of bitstreams: 1
U0001-0202202116374400.pdf: 12845113 bytes, checksum: 7e1442cfc24360b87b7568e331ac977a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 ii
中文摘要 iii
Abstract iv
Table of Contents v
List of Figures viii
List of Tables xviii
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Basic Concepts of LIBs 5
2.2 Anodes 8
2.2.1 Carbon Anode Materials 8
2.2.2 Silicon Anode Materials 10
2.2.3 Silicon-Carbon (Si-C) Composite Materials 15
2.3 Electrolytes 19
2.3.1 Solvents and Lithium Salts 19
2.3.2 Electrolyte Additives 24
2.4 Previous Works of Our Lab 26
Chapter 3 Si-C Composite Materials 27
3.1 Introduction 27
3.2 Experimental 29
3.2.1 Chemicals and Materials 29
3.2.2 Instruments and Devices 30
3.2.3 Preparing Composite Materials 31
3.2.4 Electrode Fabrication and Cell Assembly 32
3.2.5 Characterization of Recycled Si Powders and Composite Materials 33
3.2.6 Electrochemical Tests on Cells 40
3.3 Results and Discussion 42
3.3.1 Study of Si Anode Materials 42
3.3.2 Development of Silicon-Carbon Composite Anode 72
3.4 Summary 101
Chapter 4 The Effect of Electrolyte Additives on Recycled Silicon Anodes 102
4.1 Introduction 102
4.2 Experimental 105
4.2.1 Chemicals and Materials 105
4.2.2 Instruments and Devices 106
4.2.3 Solution Preparation and Lithium Symmetric Cells 107
4.2.4 Studies of Ionic Transport 110
4.2.5 Electrochemical Tests on Cells with Recycled Si Based Anodes 119
4.3 Results and Discussion 120
4.3.1 Ionic Transport of Electrolyte with VC 120
4.3.2 Ionic Transport of Electrolyte with MA 132
4.3.3 Characterization of Cells with Si Based Anodes 137
4.4 Summary 163
Chapter 5 Effect of Electrolyte Additives on Recycled Silicon Anodes Containing Carbon Black 164
5.1 Introduction of Si-C Composite Materials 164
5.2 Additives Effect on SiCBDI3PA Anode 166
Chapter 6 Conclusion 170
References 172
Appendix - Supporting Figures 182
dc.language.isoen
dc.subject鋰離子電池負極zh_TW
dc.subject碳/矽複合材料zh_TW
dc.subject碳黑殘餘物zh_TW
dc.subject電解液添加劑zh_TW
dc.subject碳酸亞乙烯酯zh_TW
dc.subjectcarbon black residuesen
dc.subjectsilicon-carbon composite materialsen
dc.subjectanode for lithium ion batteryen
dc.subjectvinylene carbonateen
dc.subjectelectrolyte additiveen
dc.title以回收矽粒子與碳黑製備鋰離子電池負極材料及含添加劑之電解液電化學特性研究zh_TW
dc.titleStudy of Recycled Silicon Powders and Carbon Black for Negative Electrodes of Lithium Ion Batteries and Electrochemical Characterization of Electrolytes Containing Additivesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-5540-2387
dc.contributor.oralexamcommittee周偉龍(Wei-Lung Chou),王勝仕(Sheng-Shih Wang)
dc.subject.keyword鋰離子電池負極,碳/矽複合材料,碳黑殘餘物,電解液添加劑,碳酸亞乙烯酯,zh_TW
dc.subject.keywordanode for lithium ion battery,silicon-carbon composite materials,carbon black residues,electrolyte additive,vinylene carbonate,en
dc.relation.page203
dc.identifier.doi10.6342/NTU202100400
dc.rights.note有償授權
dc.date.accepted2021-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0202202116374400.pdf
  未授權公開取用
12.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved