請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64840完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉(Yean-Woei Kiang) | |
| dc.contributor.author | Po-Han Chang | en |
| dc.contributor.author | 張博涵 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:01:15Z | - |
| dc.date.available | 2012-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | [1] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, New Jersey (2001).
[2] J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays, Wiley, New Jersey (2008). [3] 郭浩中、賴芳儀、郭守義,LED原理與應用,五南圖書出版公司,台北市 (2009). [4] H. J. Round, “A note on carborundum,” Electrical world 49, 309-310 (1907). [5] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Applied Physics Letters 1, 82-83 (1962). [6] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Applied Physics Letters 57, 2937-2939 (1990). [7] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Applied Physics Letters 58, 1010-1012 (1991). [8] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Applied Physics Letters 64, 2839-2841 (1994). [9] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Applied Physics Letters 75, 2365-2367 (1999). [10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters 48, 353-355 (1986). [11] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics 28, L2112-L2114 (1989). [12] S. Nakamura, “GaN growth using GaN buffer layer,” Japanese Journal of Applied Physics 30, L1705- L1707 (1991). [13] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Japanese Journal of Applied Physics 31, L139-L142 (1992). [14] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Japanese Journal of Applied Physics 32, L8-L11 (1993). [15] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Applied Physics Letters 62, 2390-2392 (1993). [16] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” Journal of Applied Physics 76, 8189-8191 (1994). [17] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Japanese Journal of Applied Physics 34, L1332-L1335 (1995). [18] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Applied Physics Letters 67, 1868-1870 (1995). [19] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” Journal of Display Technology 3, 160-175 (2007). [20] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Applied Physics Letters 78, 3337-3339 (2001). [21] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” Journal of Applied Physics 90, 4191-4195 (2001). [22] C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” Journal of Applied Physics 95, 3916-3922 (2004). [23] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Applied Physics Letters 75, 1360-1362 (1999). [24] B. S. Tan, S. Yuan, and X. J. Kang, “Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate,” Applied Physics Letters 84, 2757-2759 (2004). [25] E. F. Schubert, Light-Emitting Diodes, Cambridge University, New York (2006). [26] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Applied Physics Letters 94, 111109 (2009). [27] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Applied Physics Letters 63, 2174-2176 (1993). [28] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters 84, 855-857 (2004). [29] C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H. W. Huang, T. C. Lu, and S. C. Wang, “Light–output enhancement of nano-roughened GaN laser lift-off light-emitting diodes formed by ICP dry etching,” IEEE Photonics Technology Letters 19, 849-851 (2007). [30] S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Horng, “Enhanced light output in roughened GaN-based light-emitting diodes using electrodeless photoelectrochemical etching,” IEEE Photonics Technology Letters 18, 2472-2474 (2006). [31] H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology 17, 2998-3001 (2006). [32] H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, “Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures,” Optics Letters 33, 1273-1275 (2008). [33] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates,” Materials Science and Engineering B 122, 184-187 (2005). [34] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technology Letters 18, 1152-1154 (2006). [35] C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photonics Technology Letters 19, 1200-1202 (2007). [36] S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen, and D. S. Wuu, “Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing,” IEEE Photonics Technology Letters 18, 2623-2625 (2006). [37] C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang, and C. T. Kuo, “Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure,” IEEE Photonics Technology Letters 20, 184-186 (2008). [38] A. Murai, D. B. Thompson, H. Masui, N. Fellows, U. K. Mishra, S. Nakamura, and S. P. DenBaars, “Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding,” Applied Physics Letters 89, 171116 (2006). [39] A. Murai, D. B. Thompson, H. Hirasawa, N. Fellows, S. Brinkley, C. J. Won, M. Iza, U. K. Mishra, S. Nakamura, and S. P. DenBaars, “Pointed cone shaped light-emitting diodes based on ZnO/GaN wafer bonding,” Japanese Journal of Applied Physics 47, 3522-3523 (2008). [40] N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, “Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire,” Applied Physics Letters 76, 1804-1806 (2000). [41] J. K. Kim, T. Gessmann, H. Luo, and E. F. Schubert, “GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector,” Applied Physics Letters 84, 4508-4510 (2004). [42] J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Applied Physics Letters 88, 013501 (2006). [43] A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Applied Physics Letters 88, 133514 (2006). [44] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Applied Physics Letters 91, 171103 (2007). [45] N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the American Statistical Association 44, 335-341 (1949). [46] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Applied Optics 40, 1427-1437 (2001). [47] Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Optics Express 18, 9398-9412 (2010). [48] C. C. Sun, T. X. Lee, Y. C. Lo, C. C. Chen, and S. Y. Tsai, “Light extraction enhancement of GaN-based LEDs through passive/active photon recycling,” Optics Communications 284, 4862-4868 (2011). [49] E. Hecht, Optics, Addison Wesley, New York (2002). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64840 | - |
| dc.description.abstract | 本論文中,吾人發展一套蒙地卡羅射線追跡法,並針對具表面圖樣化之垂直型氮化鎵發光二極體進行光萃取效率模擬。吾人選擇三種圖樣化表面,分別是一維弦波光柵、二維微透鏡陣列與粗糙表面,並分析圖樣化上表面與圖樣化底部反射鏡對光萃取效率與遠場分佈的影響。藉由改變週期性結構的高度與週期,或改變粗糙表面的均方根高度與相關長度,觀察光萃取效率之變化趨勢,且探討封裝造成的影響。此外,吾人亦使用蒙地卡羅射線追跡法對單一表面進行模擬,得到光射線於介面之穿透機率分佈、反射角機率分佈與多重反射穿透次數等資訊,並分析光射線於單一介面上的散射行為,以了解具表面圖樣化之垂直型發光二極體的光萃取機制。 | zh_TW |
| dc.description.abstract | In the thesis, a Monte Carlo ray tracing method is developed to simulate the light extraction efficiency of a vertical GaN LED with textured surface. We select three kinds of textured surfaces, including one-dimensional sinusoidal gratings, two-dimensional micro-lens arrays and rough surfaces, and analyze the effects of textured upper surface and bottom mirror on the light extraction efficiency and the far-field pattern. By changing the height and the period of a periodic surface structure or by changing the RMS height and the correlation length of a rough surface, the variation of light extraction efficiency is examined. Also investigated is the effect of encapsulation. In addition, we use the Monte Carlo ray tracing method to simulate the scenario of a single surface. The transmission probability distribution, the reflection angle probability distribution and the number of multiple reflection or transmission are calculated to analyze the scattering of light at an interface, leading to understanding the light extraction mechanisms of vertical LEDs with textured surfaces. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:01:15Z (GMT). No. of bitstreams: 1 ntu-101-R98941057-1.pdf: 38989124 bytes, checksum: 8c99fec36f618db43975d5d06e37d138 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 第一章 緒論 1 1-1歷史回顧 1 1-2 LED的結構 4 1-3 研究動機 6 第二章 LED之效率與光萃取機制 9 2-1 LED效率之基本定義 9 2-1-1內部量子效率 9 2-1-2光萃取效率 9 2-1-3外部量子效率 10 2-2 LED之光萃取機制 11 2-2-1 LED內之多重反射 11 2-2-2 LED之光萃取結構設計 13 2-3 提升LED效率之方法 15 2-3-1 表面圖樣化 15 2-3-2 基板圖樣化 16 2-3-3 元件形狀設計 16 2-3-4 其他方法 17 第三章 蒙地卡羅模型與射線追跡法 20 3-1 蒙地卡羅法簡介 20 3-2 蒙地卡羅光學模型 21 3-2-1 亂數取樣 21 3-2-2 光之偏振狀態 27 3-2-3 光之行進方向 29 3-3 射線追跡法與多重反射穿透 30 3-3-1 射線追跡法 30 3-3-2 多重反射穿透 33 3-4 程式架構 37 3-4-1 單一表面程式架構 37 3-4-2 VLED程式架構 38 第四章 模擬結果與討論 52 4-1 VLED之蒙地卡羅射線追跡模擬 52 4-1-1 VLED結構與模擬參數簡介 52 4-1-2 VLED模擬結果 54 4-2 單一表面之蒙地卡羅射線追跡模擬 61 4-2-1 單一表面結構與模擬參數簡介 61 4-2-2 上表面模擬結果 63 4-2-3 下表面模擬結果 69 4-3 綜合討論 73 第五章 結論與展望 108 參考文獻 112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蒙地卡羅 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 光萃取效率 | zh_TW |
| dc.subject | GaN | en |
| dc.subject | Monte Carlo | en |
| dc.subject | LED | en |
| dc.subject | Light Extraction Efficiency | en |
| dc.title | 以蒙地卡羅射線追跡法模擬垂直型氮化鎵發光二極體之光萃取效率 | zh_TW |
| dc.title | Simulation on Light Extraction Efficiency of Surface-Textured Vertical GaN LEDs with Monte Carlo Ray Tracing Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠(Chih-Chung Yang),黃建璋(Jian-Jang Huang) | |
| dc.subject.keyword | 蒙地卡羅,氮化鎵,發光二極體,光萃取效率, | zh_TW |
| dc.subject.keyword | Monte Carlo,GaN,LED,Light Extraction Efficiency, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 38.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
