Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64828
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊恩誠
dc.contributor.authorChao-Hung Liangen
dc.contributor.author梁兆宏zh_TW
dc.date.accessioned2021-06-16T23:00:36Z-
dc.date.available2017-08-15
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citationBlakemore R. 1975. Magnetotactic bacteria. Science 190: 377-379.
Chambarelli LL, Pinho MA, Abracado LG, Esquivel DMS, Wajnberg E. 2008. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts. J Magn Magn Mater 320: e207–e210.
Collett TS. 1996. Insect navigation en route to the goal: multiple strategies for the use of landmarks. J Exp Biol 199: 227-235.
Collett TS, Baron J. 1994. Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368: 137-140.
Collett M, Collett TS. 2000. How do insects use path integration for their navigation? Biol Cybern 83: 245-259.
Collett TS, Collett M. 2002. Memory use in insect visual navigation. Nat Rev Neurosci 3: 542-552.
Davila AF, Fleissner G, Winklhofer M, Petersen N. 2003. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 28: 647-652.
Davila AF, Winklhofer M, Shcherbakov VP, Petersen N. 2005. Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys J 89: 56-63.
Desoil M, Gillis P, Gossuin Y, Pankhurst QA, Hautot D. 2005. Definitive identification of magnetic nanoparticles in the abdomen of the honeybee Apis mellifera. J Phys Conf Ser 17: 45-49.
Diebel CE, Proksch R, Green CR, Nielson P, Walker MM. 2000. Magnetite defines a magnetoreceptor. Nature 406: 299-302.
Dyer FC, Gould JL. 1981. Honey bee orientation: a backup system for cloudy days. Science 214: 1041-1042.
Dyer FC, Gill M, Sharbowski J. 2002. Motivation and vector navigation in honey bees. Naturwissenschaften 89: 262-264.
Edmonds DT. 1992. A magnetite null detector as the migrating bird’s compass. Proc R Soc Lond B 249: 27-31.
Edmonds DT. 1996. A sensitive optically detected magnetic compass for animals. Proc R Soc Lond B 263: 295-298.
El-Jaick LJ, Acosta-Avalos D, Motta de Souza Esquivel D, Wajnberg E, Linhares PM. 2001. Electron paramagnetic resonance study of honeybee Apis mellifera abdomens. Eur Biophys J 29: 579-586.
Esch HE, Burns JE. 1996. Distance estimation by foraging honeybees. J Exp Biol 199: 155-162.
Esquivel DMS, Wajnberg E, Cernicchiaro GR, Acosta- Avalos D, Garcia BE. 2002. Magnetic material arrangement in Apis mellifera abdomens. Mat Res Soc Symp Proc 724: N7.2.1-N7.2.4.
Evans DAD. 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444: 51-55.
Frankel RB, Blakemore RP, Wolfe RS. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355-1356.
Frier H, Edwards E, Smith C, Neale S, Collett T. 1996. Magnetic compass cues and visual pattern learning in honeybees. J Exp Biol 199: 1353-1361.
Gegear RJ, Casselman A, Waddell S, Reppert SM. 2008. CRYPTOCHROME mediates light-dependent magnetosensitivity in Drosophila. Nature 454: 1014-1018.
Gould JL. 1986. The locale map of honey bees: Do insects have cognitive maps? Science 232: 861-863.
Gould JL, Kirschvink JL, Deffeyes KS. 1978. Bees have magnetic remanence. Science 201: 1026-1028.
Gould JL, Kirschvink JL, Deffeyes KS, Brines ML. 1980. Orientation of demagnetized bees. J Exp Biol 80: 1-8.
Homberg U. 2004. In search of the sky compass in the insect brain. Naturwissenschaften 91: 199-208.
Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T. 2006. Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192: 691-700.
Hsu CY, Li CW. 1993. The ultrastructure and formation of iron granules in the honeybee (Apis mellifera). J Exp Biol 180: 1-13.
Hsu CY, Li CW. 1994. Magnetoreception in honeybees. Science 265: 95-97.
Hsu CY, Ko FY, Li CW, Fann K, Lue JT. 2007.
Magnetoreception system in honey bee (Apis mellifera). PLoS
one 2: e395.
Jong D. 1982. Orientation of comb building by honey bees. J Comp Physiol 147: 495-501.
Johnsen S, Lohmann KJ. 2005. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6: 703-712.
Keim CN, Cruz-Landim C, Carneiro FG, Farina M. 2002. Ferritin in iron containing granules from the fat body of the honeybees Apis mellifera and Scaptotrigona postica. Micron 33: 53-59.
Kirschvink JL. 1989. Magnetite biomineralization and geomagnetic sensitivity in higher animals: an update and recommendations for future study. Bioelectromagnetics 10: 239-259.
Kirschvink JL, Kobayashi A. 1991. Is geomagnetic sensitivity real? Replication of the Walker–Bitterman conditioning experiment in honey bees. Am Zool 31: 169-185.
Kirschvink JL, Walker MM. 1995. Honeybees and magnetoreception. Science Comment 269: 1889.
Kirschvink JL, Walker MM, Diebel CE. 2001. Magnetite-based magneto- reception. Curr Opin Neurobiol 11: 462-467.
Kirschvink JL, Padmanabha S, Boyce CK, Oglesby J. 1997. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 200: 1363-1368.
Kuterbach DA, Walcott B. 1986a. Iron-containing cells in the honeybee (Apis mellifera). I. Adult morphology and physiology. J Exp Biol 126: 375-387.
Kuterbach DA, Walcott B. 1986b. Iron-containing cells in the honeybee (Apis mellifera). II. Accumulation during development. J Exp Biol 126: 389-401.
Kuterbach DA, Walcott B, Reeder RJ, Frankel RB. 1982. Iron-containing cells in the honey bee (Apis mellifera). Science 218: 695-697.
Leucht T. 1984. Responses to light under varying magnetic conditions in the honeybee, Apis mellifica. J Comput Physiol A 154: 865-870.
Merritt R, Purcell C, Stroink G. 1983. Uniform magnetic field produced by three, four, and five square coils. Rec Sci Instrum 54: 579-882.
Mota T, Roussel E, Sandoz JC, Giufa M. 2011. Visual conditioning of the sting extension reflex in harnessed honeybees. J Exp Biol 214: 3577-3587.
Nesson MH. 1995. Honeybees and magnetoreception. Science comment 269: 1889-1890.
Nichol H, Locke M. 1995. Honeybees and magnetoreception. Science comment 269: 1888-1889.
Oliveira JF, Wajnberg E, Esquivel DMS, Weinkauf S, Winklhofer S, Hanzlik M. 2010. Ant antennae: are they sites for magnetoreception? J R Soc Interface 7: 143-152.
Phillips JB. 1987. Specialized visual receptors respond to magnetic field alignment in the blowfly. Sot Neurosci Abstr 13: 297.
Presti D, Pettigrew JD. 1980. Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature 285: 99-101.
Ratnieks FLW. 2000. How far do bees forage. Bee Improvement 6: 10-11.
Ritz T, Adem S, Schulten K. 2000. A model for photoreceptor-based magnetoreception in birds. Biophysical J. 78: 707-718.
Ritz T, Dommer DH, Phillips JB. 2002. Shedding light on vertebrate magnetoreception. Neuron 34: 503-506.
Rossel S, Wehner R. 1986. Polarization vision in bees. Nature 323: 128-131.
Sakaki Y, Motomiya T, Kato M, Ogura M. 1990. Possible mechanism of biomagnetic sense organ extracted from sockeye salmon. IEEE Trans Magn 26: 1554-1556.
Schmitt DE, Esch HE. 1993. Magnetic orientation of honeybees in the laboratory. Naturwissenchaften 80: 41-43.
Semm P, Beason RC 1990. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res Bull 25: 735-740.
Shcherbakov VP, Winklhofer M. 1999. The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 28: 380-392.
Srinivasan MV, Zhang S, Altwein M, Tautz J. 2000. Honeybee navigation: nature and calibration of the ‘odometer’. Science 287: 851-853.
Steven MR, Gegear RJ, Merlin C. 2010. Navigational mechanisms of migrating monarch butterflies. Trends NeuroSci 33: 399-406.
Takeda K. 1961. Classical conditioned response in the honey bee. J Insect Physiol 6: 168-179.
Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W. 2005. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92: 86-90.
Vacha M. 2006. Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta Americana. J Exp Biol 209: 3882-3886.
Vacha M, Puzova T, Kvicalova M. 2009. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212: 3473-3477.
Velarde RA, Sauer CD, Walden KKO, Fahrbach SE, Robertson HM. 2005. Pteropsin: A vertebrate-like non-visual opsin expressed inthe honey bee brain. Insect Biochem Mol Biol
35: 1367-1377.
Vergoz V, Roussel E, Sandoz JC, Giurfa M. 2007. Aversive Learning in Honeybees Revealed by the Olfactory Conditioning of the Sting Extension Reflex. PLoS ONE 2(3): e288.
Von Frisch K. 1967. The dance language and orientation of bees. Harvard University Press, Cambridge. 592 pp.
Walcott C, Gould JL, Kirschvink JL 1979. Pigeons have magnets. Science 205: 1027-1029.
Walker MM. 2008. A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. J Theor Biol 250: 85-91.
Walker MM, Bitterman ME. 1985. Conditional responding to magnetic fields by honeybees. J Comp Physiol A 157: 67-71.
Walker MM, Bitterman ME. 1989a. Attached magnets impair magnetic field discrimination by honeybees. J Exp Biol 141: 447-451.
Walker MM, Bitterman ME. 1989b. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145: 489-494.
Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR. 1997. Structure and function of the vertebrate magnetic sense. Nature 390: 371-376.
Wajnberg E, Cernicchiaro G, Acosta-Avalos D, El-Jaick LJ, Esquivel DMS. 2001. Induced remanent magnetization of social insects. J Magn Magn Mater 226: 2040-2041.
Wajnberg E, Acosta-Avalos D, Alves OC, DeOliveira JF, Srygley RB, Esquivel DMS. 2010. Magnetoreception in eusocial insects: an update. J R Soc Interface 7: S207-S225.
Wehner R, Michel B, Antonsen P. 1996. Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199: 129-140.
Wiltschko W, Wiltschko RJ. 2005. Magnetic orientation and magnetoreception in birds and other animals. J Comput Physiol A 191: 675-693.
Winklhofer, M. 2010. Magnetoreception. J R Soc Interface 7: S131-S134.
Yorke ED. 1979. A possible magnetic transducer in birds. J Theor Biol 77: 101-105.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64828-
dc.description.abstract蜜蜂 (Apis mellifera) 被認為能夠感受磁場的改變,陸生動物磁感受可分為兩種假說:化學磁感受假說及磁鐵礦磁感受假說。前人研究發現蜜蜂腹部脂肪體與營養細胞中存在許多鐵顆粒並認為其具有感受磁場的作用,然而目前缺乏直接證據證明鐵顆粒與磁感受的關係。此外,化學磁感受假說中提出的磁感受器隱色素 (cryptochrome) 在蜜蜂腦內也被發現,其也具有作為蜜蜂磁感受器的潛力。為檢驗蜜蜂是否能由腹部磁鐵接受磁場訊息,本研究首先透過古典制約訓練蜜蜂並藉由觀察其口吻延伸反應 (proboscis extension reflex) 確認蜜蜂的磁感受能力,蜜蜂接受兩天的訓練後得以關連磁場刺激與口吻延伸反應,接著經由手術的方式切斷其腹神經索以阻止腹部與腦的訊息傳遞,手術後的蜜蜂仍能學習氣味與口吻延伸反應的關聯,然而無法再對磁場刺激產生反應。而傳遞磁場訊息的神經反應也在腹神經索被記錄到。本研究說明蜜蜂經訓練後得以關聯磁場刺激與口吻延伸反應,且證實其磁感受訊號確實來自腹部並經由腹神經索傳遞,我們認為蜜蜂將成為磁鐵礦磁感受系統相關研究的理想模式動物並期許未來有更多研究釐清磁感受系統的生理機制。zh_TW
dc.description.abstractIt has been well known that the honey bees, Apis mellifera, are able to detect the earth’s magnetic field. So far, two hypothesized models are proposed for the magnetoreception of terrestrial animals, i.e. the chemical and the magnetite-based magnetoreception. Previous studies showed that there are some iron granules in the fat body and the trophocytes of the honey bees’ abdomen, suggesting the iron granules are responsible for sensing magnetic changes. However, there is no direct evidence to associate these iron granules with the magnetoreception of honey bee. In addition, the magnetoreceptor of the chemical magnetoreception system, so called cryptochrome, has also been found in the honey bees’ brain which might be the potential magnetoreceptor of the bee. In this study, we first conducted the classical conditioning experiment by monitoring the proboscis extension reflex (PER) to demonstrate the ability of honey bee’s magneticoreception. Honey bees were trained successfully to associate the magnetic stimulus with a sucrose reward after two days of training. Then, the ventral nervous cord was cut to disconnect the signal transmission from the abdomen to the brain. The honey bees could no longer associate the magnetic stimulus with the sucrose reward after the disconnection, but still could learn an olfactory PER task. Moreover, the neural signals transmitted by the VNC have also been recorded at the “neck” of the bees. Our results demonstrate that the bees can be trained to combine the magnetic stimulus and PER through classical conditioning, and reveal that the magnetoreception signals come from the abdomen via the ventral nervous cord to the bee brain and confirm the magnetite-based magnetoreception in honey bee.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:00:36Z (GMT). No. of bitstreams: 1
ntu-101-R99632001-1.pdf: 2893250 bytes, checksum: 06f0b1146ccffdeb3c706249129840a0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChinese abstract i
English abstract ii
Introduction 1
Literature review 5
I. Magnetoreception system 5
1. Model of magnetite-based magnetoreception 5
2. Neurophysiology of the magnetite-based magnetoreception 8
3. Model of the light-dependent magnetoreception 9
II. Magnetoreception in honey bees 10
III. Iron granules in honey bee abdomen 11
Methods and materials 13
I. Honey bee source 13
II. Magnetic field generator 13
III. Proboscis extension reflex (PER) training 14
1. Pre-experimental preparation 15
2. PER training procedure 16
IV. The effects of cutting the ventral nervous cord (VNC) on magnetoreception 17
1. Micro-surgery 17
2. Magnetic treatment 18
3. Odorous treatment as control group 18
V. Neural signals responded to the field 19
1. Experimental equipments 19
2. The experimental procedure of recordind the VNC signals 20
Results 22
I. PER training 22
II. The effects of cutting the VNC on magnetoreception 22
1. The responses after the surgery in magnetism PER 22
2. The responses after the surgery in odorous PER 23
III. Neural signals responded to the field 23
Discussions 25
I. Classical conditioning by the magnetic stimulus 25
II. The effects of cutting the VNC on magnetoreception 26
III. The electrophysiological evidence of the magnetoreception in honeybees 27
References 30
dc.language.isozh-TW
dc.subject生物感磁zh_TW
dc.subject口吻延伸反應zh_TW
dc.subject磁鐵礦磁感受系統zh_TW
dc.subject蜜蜂zh_TW
dc.subject古典制約zh_TW
dc.subjectbiological magnetic senseen
dc.subjecthoney beeen
dc.subjectmagnetite-based magnetoreceptionen
dc.subjectclassical conditionen
dc.subjectproboscis extension reflexen
dc.title蜜蜂的磁場感受之行為與神經反應zh_TW
dc.titleBehavioral and neural response of honey bee (Apis mellifera) magnetoreceptionen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李後晶,路光暉
dc.subject.keyword蜜蜂,生物感磁,古典制約,口吻延伸反應,磁鐵礦磁感受系統,zh_TW
dc.subject.keywordhoney bee,biological magnetic sense,classical condition,proboscis extension reflex,magnetite-based magnetoreception,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved