Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64806
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李公哲
dc.contributor.authorPei-Ya Wengen
dc.contributor.author翁珮雅zh_TW
dc.date.accessioned2021-06-16T22:59:44Z-
dc.date.available2014-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citationAlizadeh, P., Yekta, B. E., Gervei, A. (2004) “Effect of Fe2O3 Addition on the Sinterability and Machinability of Glass-Ceramics in the System MgO–CaO–SiO2–P2O5”, Journal of the European Ceramic Society, 24, 3529-33.
Aloisi, M., Karamanov, A., Taglieri, G., Ferrante, F., Pelino, M. (2006) “Sintered Glass Ceramic Composites from Vitrified Municipal Solid Waste Bottom Ashes”, Journal of Hazardous Materials, 137, 138-43.
Ando, M., Ohsato, H., Kagomiya, I., Tsunooka, T. (2008) “Quality Factor of Forsterite for Ultrahigh Frequency Dielectrics Depending on Synthesis Process”, Japanese Journal of Applied Physics - Part 1Regular Papers and Short Notes, 47, 7729-31.
Beall, G. H. (1992) “Glasses, Ceramics, and Composites from Lunar Materials”, NASA.
Bernardo, E., Bonomo, E., Dattoli, A. (2010) “Optimisation of Sintered Glass–Ceramics from an Industrial Waste Glass”, Ceramics International, 36, 1675-80.
Cai, W., Jiang, T., Tan, X., Wei, Q., Li, Y. (2002) “Development of Low Dielectric Constant Calcium Silicate Fired at Low Temperature”, Electronic Components & Materials, 16-18.
Chang, C. R., Jean, J. H. (1999) “Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO-B2O3-SiO2 Glass-Ceramics”, Journal of the American Ceramic Society, 82, 1725-32.
Chelkowski, A. (1979) “Dielectric Physics”, Poland, Silesian University Katowice.
Cheng, T. W. (2004) “Effect of Additional Materials on the Properties of Glass-Ceramic Produced from Incinerator Fly Ashes”, Chemosphere, 56, 127-31.
Conley, J. E., Wilson, H., Klinefelter, T. A. (1948) Production of Lightweight Concrete Aggregates from Clays, Shales, Slates and Other Material, U.S. Dept. of the Interior, Bureau of Mines.
Ferreira, E. B., Zanotto, E. D., Scudeller, L. A. M. (2002) “Glass and Glass-Ceramic from Basic Oxygen Furnace (BOF) Slag”, Glass Science and Technology, 75, 75-86.
Gdula, R. A. (1971) “Anorthite Ceramic Dielectrics”, Bull Am Ceram Soc.
Gupta, T. K., Jean, J. H. (1996) “Principles of the Development of a Silica Dielectric for Microelectronics Packaging”, Journal of Materials Research, 11, 243-63
Jean, J. H., Gupta, T. K. (1993) “Crystal Growth Inhibitor in Binary Borosilicate Glass Composite—Gallium Oxide”, Journal of the American Ceramic Society, 76, 751-53.
Karamanova, E., Avdeev, G., Karamanov, A. (2011) “Ceramics from Blast Furnace Slag, Kaolin and Quartz”, Journal of the European Ceramic Society, 31, 989-98.
Kim, J., Hwang, S., Sung, W., Kim, H. (2008) “Effect of Anorthite and Diopside on Dielectric Properties of Al2O3/Glass Composite Based on High Strength of LTCC Substrate”, Journal of Materials Science, 43, 4009-15.
Lin, K. L. (2007) “Use of Thin Film Transistor Liquid Crystal Display (TFT-LCD) Waste Glass in the Production of Ceramic Tiles”, Journal of Hazardous Materials, 148, 91-97.
Motz, H., Geiseler, J. (2001) “Products of Steel Slags an Opportunity to Save Natural Resources”, Waste Management, 21, 285-93.
Omar, A., Elshennauri, A.W., Khater, G.A. (1991) “The Role of Cr2O3, LiF and Their Mixtures on Crystalline Phase Formation and Microstructure in Ba, Ca, Mg Aluminosilicates Glass”, Br. Ceram. Trans. J.
Pelino, M., Cantalini, C., Boattini, P. P., Abbruzzese, C., Rincon, J. M., Garcia Hernandez, J. E. (1994) “Glass-Ceramic Materials Obtained by Recycling Goethite Industrial Wastes”, Resources, Conservation and Recycling, 10, 171-76.
Radosavljevic, S., Milic, D., Gavrilovski, M. (1996) “Mineral Processing of a Converter Slag and Its Use in Iron Ore Sintering”, Magnetic and Electrical Separation, 7, 201-11.
Rezvani, M., Eftekhari-Yekta, B., Solati-Hashjin, M., Marghussian, V. K. (2005) “Effect of Cr2O3, Fe2O3 and TiO2 Nucleants on the Crystallization Behaviour of SiO2–Al2O3–CaO–MgO(R2O) Glass-Ceramics”, Ceramics International, 31, 75-80.
Riley, C. M. (1951) “Relation of Chemical Properties to the Bloating of Clays”, Journal of the American Ceramic Society, 34, 121-28.
Rozenstrauha, I., Bajare, D., Cimdins, R., Berzina, L., Bossert, J., Boccaccini, A. R. (2006) “The Influence of Various Additions on a Glass-Ceramic Matrix Composition Based on Industrial Waste”, Ceramics International, 32, 115-19.
Sasikala, T. S., Suma, M. N., Mohanan, P., Pavithran, C., Sebastian, M. T. (2008) “Forsterite-Based Ceramic–Glass Composites for Substrate Applications in Microwave and Millimeter Wave Communications”, Journal of Alloys and Compounds, 461, 555-59.
Shannon, R. D., Dickinson, J. E., Rossman, G. R. (1992) “Dielectric Constants of Crystalline and Amorphous Spodumene, Anorthite and Diopside and the Oxide Additivity Rule”, Physics and Chemistry of Minerals, 19, 148-56.
Song, K. X., Chen, X. M., Fan, X. C. (2007) “Effects of Mg/Si Ratio on Microwave Dielectric Characteristics of Forsterite Ceramics”, Journal of the American Ceramic Society, 90, 1808-11.
Sridharan, S., Tomozawa, M. (1992) “Effect of Various Oxide Additives on Sintering of BaO-SiO2 System Glass-Ceramics”, Journal of Materials Science, 27, 6747-54.
Stillman, D. E., Olhoeft, G. R. (2004) “GPR and Magnetic Minerals at Mars Temperatures”, Ground Penetrating Radar, 2004. GPR 2004. Proceedings of the Tenth International Conference on.
Tsai, M. T. (2005) “Synthesis of Nanocrystalline Enstatite Fiber Via Alkoxide Sol–Gel Process”, Journal of the American Ceramic Society, 88, 1770-72.
Tummala, R. R. (1991) “Ceramic and Glass-Ceramic Packaging in the 1990s”, Journal of the American Ceramic Society, 74, 895-908.
Wang, S. (2010) “Effects of Fe on Crystallization and Properties of a New High Infrared Radiance Glass-Ceramics”, Environmental Science & Technology, 44, 4816-20.
Wu, J. P., Rawlings, R. D., Boccaccini, A. R., Dlouhy, I., Chlup, Z. (2006) “A Glass–Ceramic Derived from High TiO2-Containing Slag: Microstructural Development and Mechanical Behavior”, Journal of the American Ceramic Society, 89, 2426-33.
Yeon, D., Jo, Y., Saji, V., Kang, D., Cho, Y. (2009) “Crystallization Behavior and Microwave Dielectric Characteristics of ZnO-(La, Nd)2O3-B2O3-Based Dielectrics”, Journal of Electroceramics, 23, 127-32.
Yoon, S. D., Yun, Y. H. (2005) “An Advanced Technique for Recycling Fly Ash and Waste Glass”, Journal of Materials Processing Technology, 168, 56-61.
Zachariasen, W. H. (1932) “The Atomic Arrangement in Glass”, Journal of the American Chemical Society, 54, 3841-51.
中國鋼鐵股份有限公司,http://www.csc.com.tw,2012
日本下水道月刊,「調查報告/下水污泥之建設資材利用技術之現狀課題」,第二卷,第七期,1994。
王金鐘,李德河,「轉爐石作為道路基底層及工程土方材料再生利用之力學特性研究」,中國土木水利工程學刊,第十七卷,第二期,2005a
王金鐘,李德河,「轉爐石作為基底層材料及其工程特性之研究」,國立成功大學土木工程研究所博士論文,2005b
光電科技工業協進會,「LCD 市場有賴新興技術與市場維持成長動力」,光連雙月刊,第九十七期,2012年
江慶陞,「爐碴的物性與化性」,技術與訓練,第九卷,第三期,1981
李新、李公哲,「以二階段熱處理TFT-LCD廢玻璃與轉爐石製備玻璃陶瓷之研究」,國立臺灣大學環境工程學研究所碩士論文,2011
汪建民,「陶瓷技術手冊」,中華民國產業科技發展協進會與中華民國粉末冶金協會,1994
奇美電子股份有限公司,http://www.chimei-innolux.com,2012
林東宏、李公哲,「TFT-LCD廢玻璃混合轉爐石爐渣熱處理資材化製成絕緣玻璃陶瓷之研究」,國立臺灣大學環境工程學研究所碩士論文,2010
林凱隆、張文凱、官建承,「TFT-LCD廢玻璃替代部分黏土燒製環保地磚之研究」,工業污染防治,第一百零七期,2008
林麗娟,「X光繞射原理及其應用」,工業材料第八十六期,1994
林麗娟,「X光分析技術之產業應用」,工業材料第一百零六期,1995
韋中華、李伶、韋其紅、欒強、張訓虎、欒藝娜,低介電〈ε< 2〉低密度矽灰石陶瓷材料的研製,陶瓷,第三期,2009
范振軒、李公哲,「TFT-LCD廢玻璃/氟化鈣污泥熱處理資材化為絕緣玻璃陶瓷之研究」,國立臺灣大學環境工程學研究所碩士論文,2010
科學月刊雜誌社,「一貫作業鋼鐵廠」,科學月刊,第五十六期,1974
徐自佑、吳佩玲,「LCD產業簡介」,產業評析,2008
高瑛紜、劉蘭萍、王義基,「液晶面板製造業廢棄物資源化現況評析」,綠基會通訊,2008
許家旺、吳泰伯,「In-situ電漿表面處理對原子層化學氣相沈積Al2O3、HfO2高介電薄膜應用在奈米尺度世代DRAM影響之研究」,國立清華大學材料科學工程學研究所碩士論文,2006
陳立、黃偉慶,「電弧爐氧化碴為混凝土骨材之可行性研究」,國立中央大學土木工程研究所博士論文,2003
陳炫妤、李公哲,「TFT-LCD廢玻璃添加調質劑形成MAS系玻璃陶瓷之研究」, 國立臺灣大學環境工程學研究所碩士論文,2011
陳皇鈞,「陶瓷材料概論」,曉園出版社,1987
陳嘉勳,林熴章,「廢棄液晶螢幕回收再製綠塑木建材」,遠東科技大學永續材料技術研發中心,2010
陳蒼霈、黃紀嚴,「燃煤底灰添加碳酸鎂製造玻璃陶瓷結晶行為之研究」,國立成功大學資源工程研究所碩士論文,2003
無線電技術月刊,「TFT-LCD產業綜述」,第三百八十七期,2005
傅良魁,「電法探勘教程」,地質出版社,1983
曾敏惠、黃啟原,「1-x(Bi0.5Na0.5)TiO3 –xBa(Zn1/3Nb2/3)O3 系統之合成、晶體結構、及介電性質」,國立成功大學資源工程學研究所碩士論文,2009
黃英傑,「TFT-LCD產業廢玻璃資源化介紹」,永續產業發展雙月刊,第十六期,2004
黃添福、朱瑾,「高溫電漿資源化處理不可燃漁業廢棄物製成玻璃陶瓷之研究」,國立臺灣海洋大學材料工程研究所碩士論文,2005
黃隆昇、林登峰、林平全、許伯良,「評估煉鋼爐石應用於瀝青混凝土之性質及現場鋪設成效」,中工高雄會刊,第十八卷,第二期,2010。
楊貫一,「爐石資源化─中鋼公司爐石應用的過去與未來」,技術與訓練,第十七卷,第一期,1992
經濟部工業局,「光電業資源化應用技術手冊─薄膜電晶體液晶顯示器」,2003
廖文章、向性一,「高介電常數之低溫共燒玻璃-陶瓷燒結與結晶行為之研究」國立成功大學資源工程學系碩士論文,2004
劉品均、施佑蓉(譯),「材料科學與工程」,高立圖書局有限公司,2005 (Smith, W. F., 2004)
劉國忠,「煉鋼爐渣的資源化技術與未來推展方向」,環保月刊,第一卷,第四期,2001
蔡敏行,「鋼鐵爐渣應用於海洋生態保育-日本爐渣應用概況介紹」,簡報資料,2001
蔡維哲、徐錦志,「MgO-ZnO-Al2O3-SiO2玻璃陶瓷之相變化與性質研究」,大同大學材料工程學研究所碩士論文,2005
鄭清元、黃偉慶,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,國立中央大學土木工程研究所碩士論文,2000
鍾佳伸、鄭銘章,「射出成型變模溫方法與成品表面品質之研究」,國立中央大學機械工程學研究所碩士論文,2008
羅聖全,「研發奈米科技的基本工具之一電子顯微鏡介紹–SEM」,工業技術研究院材料與化工研究所,2004
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64806-
dc.description.abstract本研究以薄膜電晶體液晶顯示器(Thin Film Transistor Liquid Crystal Display, TFT-LCD)廢玻璃及一貫作業煉鋼轉爐石(Basic Oxygen Furnace Slag, BOF slag)為原料,經熔融均質化及燒結緻密化熱處理製成絕緣玻璃陶瓷,探討轉爐石中Fe2O3含量變化對絕緣玻璃陶瓷性質之影響。研究共分三階段,第一階段固定TFT-LCD廢玻璃與轉爐石之比例,額外添加純物質Fe2O3以分析「Fe2O3含量」-「晶相」-「機械、介電特性」之關聯性;第二階段以產出優良機械、介電特性之絕緣玻璃陶瓷為目的,以不同Fe2O3含量之轉爐石進行成分調配,評估TFT-LCD廢玻璃與轉爐石製備絕緣玻璃陶瓷之可行性;第三階段整合一、二階段之結果,研析兩階段中Fe2O3含量對絕緣玻璃陶瓷性質影響之一致性。
結果顯示,Fe2O3可作為成核劑,使晶相在較低熱處理溫度析出且形成較多晶相種類。Fe2O3添加量增加可提升機械性質,使緻密化程度增加、密度上升並增強抗折強度。然而,介電性質並未隨Fe2O3添加量增加而獲得改善。
TFT-LCD廢玻璃與轉爐石混合比例為7:3,其中轉爐石由爐前渣與爐後渣比為5:5所組成,此配比於820℃進行熱處理所得試樣具有良好之機械強度及介電性質。其密度為2.64 g/cm3、抗折強度為110 MPa、介電常數為8.8、逸散因子為0.0043、品質因子為235、介電損失因子為0.037。因此,本研究調整轉爐石之爐前/爐後渣比例以改變配比中Fe2O3含量,確實可提升絕緣玻璃陶瓷性質,同時達到減少物質及能源使用之目標。
兩階段之試驗結果顯示,Fe2O3含量變化對晶相、機械強度及介電特性造成之性質差異具有一致性,故以TFT-LCD廢玻璃及轉爐石為原料製備絕緣玻璃陶瓷,Fe2O3確為主要影響因子之一。
zh_TW
dc.description.abstractThe objective of this research was to use thin film liquid crystal display (TFT-LCD) waste glass and basic oxygen furnace (BOF) slag as recycled materials to produce insulating glass-ceramic by thermal treatment. In addition, the effects of Fe2O3 content in the BOF slag on the insulating glass-ceramic’s crystalline phase, mechanical, dielectric and thermal expansion properties were also experimented and discussed in details. There were three experimental stages conducted in this study. The first stage was to fix the weight ratio of TFT-LCD waste glass to BOF slag by adding pure reagent of Fe2O3 in order to analyze the relevance of Fe2O3 content to the characteristics of the products, such as crystalline phase, mechanical and dielectric properties. The second stage was to adjust the input ingredients of BOF slag which contains various Fe2O3 content to produce insulating glass-ceramic with excellent mechanical and dielectric properties. The third stage was to analyze the consistency of the effects of Fe2O3 on the production of insulating glass-ceramic from the first and second stage.
The results indicated that Fe2O3 could act as nucleating agent to promote crystallization at lower thermal treatment temperature and stimulated the formation of a wide variety of crystal types. In addition, increase in Fe2O3 content would enhance glass-ceramic’s mechanical properties including density and flexural strength. However, dielectric properties did not improve with Fe2O3 addition.
When TFT-LCD waste glass and BOF slag was blended in the ratio of 7:3 while BOF slag was prepared with pre-BOF slag and post-BOF slag in the ratio of 5:5, under heat treatment temperature of 820℃, the insulating glass-ceramic exhibited satisfactory characteristics with product density (2.64 g/cm3), bending strength (110 MPa), dielectric constant (8.8), dissipation factor (0.0043), quality factor (235), and dielectric loss factor (0.037). The final product of glass-ceramic had good mechanical strength and dielectric properties. Therefore, this research concluded that the adjustment of the pre/post BOF slag ratio would effectively improve insulating glass-ceramic properties and achieve the goal of reducing the use of additional material and energy.
According to the results of first and second stage, it demonstrated that the differences of crystalline phase, mechanical and dielectric properties caused by the Fe2O3 content were consistent. Therefore, it is promising to manufacture insulating glass-ceramic from TFT-LCD waste glass and BOF slag, in which Fe2O3 would play one of the main affecting factors.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:44Z (GMT). No. of bitstreams: 1
ntu-101-R99541202-1.pdf: 6590932 bytes, checksum: 14c53bce6134c50642d541f4319ec7ac (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 前言 1
1-1研究緣起 1
1-2研究目的 5
第二章 文獻回顧 6
2-1 TFT-LCD廢玻璃 6
2-1-1 TFT-LCD產業之現況 6
2-1-2 TFT-LCD原理及製程 10
2-1-3 TFT-LCD廢玻璃來源與現況 15
2-1-4 TFT-LCD廢玻璃資源化概況 17
2-2一貫作業煉鋼爐渣─轉爐石 20
2-2-1轉爐石之種類與來源 21
2-2-2轉爐石之特性 25
2-2-3轉爐石資源化概況 29
2-3玻璃陶瓷 33
2-3-1玻璃、陶瓷與玻璃陶瓷 33
2-3-2玻璃陶瓷之製備 37
2-3-2-1玻璃之形成 37
2-3-2-2玻璃之成分 39
2-3-2-3相分離 41
2-3-2-4成核(nucleation)與晶體成長(crystal growth) 42
2-3-2-5成核劑 45
2-3-2-6結晶化熱處理 46
2-3-3玻璃陶瓷之熱學性質 48
2-3-4玻璃陶瓷之介電性質 50
2-3-4-1介電常數(dielectric constant) 50
2-3-4-2介電損失因子(dielectric loss factor) 55
2-3-4-3品質因子(quality factor,Q) 57
2-3-4-4介電強度 57
2-3-5 Fe2O3對玻璃陶瓷之影響 59
第三章 實驗方法與步驟 61
3-1實驗材料與設備 61
3-1-1實驗材料 61
3-1-2實驗設備 62
3-1-3分析儀器 63
3-2實驗方法 66
3-3實驗架構 72
第四章 結果與討論 76
4-1廢棄物基本性質分析 76
4-1-1三成分分析 76
4-1-2成分分析 77
4-1-3晶相分析 80
4-2第一階段─添加Fe2O3對絕緣玻璃陶瓷性質之影響 83
4-2-1熱差分析 84
4-2-2晶相分析 86
4-2-3機械性質分析 95
4-2-3-1密度和吸水率 95
4-2-3-2抗折強度 101
4-2-4介電性質分析 103
4-2-4-1介電常數 103
4-2-4-2逸散因子與品質因子 106
4-2-4-3介電損失因子 109
4-2-5熱學性質分析 111
4-2-6第一階段綜合討論 114
4-3第二階段─改變爐前/爐後渣比例探討製備絕緣玻璃陶瓷之可行性 115
4-3-1熱差分析 117
4-3-2晶相分析 119
4-3-3機械性質分析 127
4-3-3-1密度、吸水率及孔隙率 127
4-3-3-2抗折強度 130
4-3-4介電性質分析 133
4-3-4-1介電常數 133
4-3-4-2逸散因子與品質因子 135
4-3-4-3介電損失因子 138
4-3-5熱學性質分析 140
4-3-6第二階段綜合討論 143
4-4第三階段─Fe2O3為第二階段主要影響因子之評估 146
第五章 結論與建議 152
5-1結論 152
5-2建議 153
參考文獻 154
dc.language.isozh-TW
dc.subjectTFT-LCD廢玻璃zh_TW
dc.subject轉爐石zh_TW
dc.subject絕緣玻璃陶瓷zh_TW
dc.subject機械性質zh_TW
dc.subject介電性質zh_TW
dc.subjectDielectric Propertiesen
dc.subjectBasic Oxygen Furnace Slagen
dc.subjectInsulating Glass-Ceramicen
dc.subjectTFT-LCD Waste Glassen
dc.subjectMechanical Propertiesen
dc.titleFe2O3於TFT-LCD廢玻璃混合轉爐石製備絕緣玻璃陶瓷影響之研究zh_TW
dc.titleEffects of Fe2O3 on Manufacturing Insulating Glass-Ceramic from TFT-LCD Waste Glass and Basic Oxygen Furnace Slagen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鯤生,侯嘉洪
dc.subject.keywordTFT-LCD廢玻璃,轉爐石,絕緣玻璃陶瓷,機械性質,介電性質,zh_TW
dc.subject.keywordTFT-LCD Waste Glass,Basic Oxygen Furnace Slag,Insulating Glass-Ceramic,Mechanical Properties,Dielectric Properties,en
dc.relation.page160
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved