Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠
dc.contributor.authorYung-Cheng Tsengen
dc.contributor.author曾永承zh_TW
dc.date.accessioned2021-06-16T22:59:39Z-
dc.date.available2017-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] D. H. Reneker, W. L. Mattice, R. P. Quirk, and S. J. Kim, “Macromolecular smart materials and structures,” Smart Materials and Structures, vol. 1, pp. 84-90, 1992.
[2] M. Addington and D. L. Schodek, Smart materials and technologies: Architectural Press, 2005.
[3] R. Bogue, “Smart materials: a review of recent developments,” Assembly Automation, vol. 32, pp. 3-7, 2012.
[4] J. H. Lee, M. A. Oak, H. J. Choi, J. Y. Son, and H. M. Jang, “Rhombohedral–orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction,” Journal of Materials Chemistry, vol. 22, pp. 1667-1672, 2012.
[5] Z. Zhang, P. Sharma, C. N. Borca, P. A. Dowben, and A. Gruverman, “Polarization-specific adsorption of organic molecules on ferroelectric LiNbO3 surfaces,” Applied Physics Letters, vol. 97, pp. 243702-243702-3, 2010.
[6] P. Martins, A. Lasheras, J. Gutierrez, J. M. Barandiaran, I. Orue, and S. Lanceros-Mendez, “Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P (VDF-TrFE) nanocomposites,” Journal of Physics D: Applied Physics, vol. 44, pp. 1-7, 2011.
[7] M. Hu, A. A. Belik, H. Sukegawa, Y. Nemoto, M. Imura, and Y. Yamauchi, “Sophisticated Crystal Transformation of a Coordination Polymer into Mesoporous Monocrystalline Ti–Fe‐Based Oxide with Room‐Temperature Ferromagnetic Behavior,” Chemistry–An Asian Journal, vol. 6, pp. 3195-3199, 2011.
[8] T. Tadaki, K. Otsuka, and K. Shimizu, “Shape memory alloys,” Annual Review of Materials Science, vol. 18, pp. 25-45, 1988.
[9] S. H. Liu, T. S. Huang, and J. Y. Yen, “Sensor fusion in a SMA-based hexapod bio-mimetic robot,” IEEE International Conference on Advanced Robotics and its Social Impacts, pp. 1-6, 2008.
[10] S. H. Liu, T. S. Huang and J. Y. Yen, “Comparison of sensor fusion methods for an SMA-based hexapod biomimetic robot,” Robotics and Autonomous Systems, vol. 58, pp. 737-744, 2010.
[11] N. T. Tai and K. K. Ahn, “Adaptive proportional–integral–derivative tuning sliding mode control for a shape memory alloy actuator,” Smart Materials and Structures, vol. 20, pp. 1-13, 2011.
[12] P. H. Lin, H. Tobushi, K. Tanaka, T. Hattori, and M. Makita, “Pseudoelastic behaviour of TiNi shape memory alloy subjected to strain variations,” Journal of intelligent material systems and structures, vol. 5, pp. 694-701, 1994.
[13] Y. Liu and J. Van Humbeeck, “Two-way shape memory effect developed by martensite deformation in NiTi,” Acta materialia, vol. 47, pp. 199-209, 1998.
[14] K. Mehrabi, M. Bruncko, and A. C. Kneissl, “Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons,” Journal of Alloys and Compounds, vol. 526, pp. 45-52, 2012.
[15] S. H. Chang and C. Y. Lee, “Damping characteristics of TiNi shape memory alloy wires reinforced epoxy resin,” Journal of Reinforced Plastics and Composites, vol. 30, pp. 1931-1938, 2011.
[16] S. K. Vajpai, R. K. Dube, and S. Sangal, “Processing and Characterization of Cu-Al-Ni Shape Memory Alloy Strips Prepared from Prealloyed Powder by Hot Densification Rolling of Powder Preforms,” Metallurgical and Materials Transactions A, vol. 42A, pp. 3178-3189, 2011.
[17] N. Stanford and D. P. Dunne, “Effect of second-phase particles on shape memory in Fe–Mn–Si-based alloys,” Materials Science and Engineering: A, vol. 454, pp. 407-415, 2007.
[18] K. Otsuka and C. M. Wayman, Shape memory materials: Cambridge University Press, 1999.
[19] A. Lendlein and S. Kelch, “Shape‐memory polymers,” Angewandte Chemie International Edition, vol. 41, pp. 2034-2057, 2002.
[20] Q. Li, Y. Zeng, and X. Tang, “The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery,” Australasian Physical and Engineering Science in Medicine, vol. 33, pp. 129-136, 2010.
[21] H. Nakayama, M. Taya, R. W. Smith, T. Nelson, M. Yu, and E. Rosenzweig, “Shape memory effect and superelastic behavior of TiNi shape memory alloy processed by vacuum plasma spray method,” Materials Science and Engineering: A, vol. 459, pp. 52-59, 2007.
[22] A. Falvo, F. M. Furgiuele and C. Maletta, “Functional behaviour of a NiTi-welded joint: Two-way shape memory effect,” Materials Science and Engineering: A, vol. 481, pp. 647-650, 2008.
[23] S. V. Razorenov, G. V. Garkushin, G. I. Kanel, O. A. Kashin, and I. V. Ratochka, “Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading,” Physics of the Solid State, vol. 53, pp. 824-829, 2011.
[24] 林昇旺, “Microstructure Simulation of Martensitic Thin Film/Substrate Accounting for the out-of-plane Inhomogeneity,” 台灣大學應用力學所碩士班論文, 2008.
[25] 蘇明德, “形狀記憶合金,” 科學發展443期, 2009.
[26] A. Sato, Y. Yamaji and T. Mori, “Physical properties controlling shape memory effect in Fe-Mn-Si alloys,” Acta Metallurgica, vol. 34, pp. 287-294, 1986.
[27] M. M. Branco, J. M. Kelly, and L. M. Guerreiro, “An algorithm to simulate the one-dimensional superelastic cyclic behavior of NiTi strings, for civil engineering applications,” Engineering Structures, vol. 33, pp. 3737-3747, 2011.
[28] C. W. Chan, H. C. Man, and T. M. Yue, “Effects of Process Parameters upon the Shape Memory and Pseudo-Elastic Behaviors of Laser-Welded NiTi Thin Foil,” Metallurgical and Materials Transactions A, vol. 42, pp. 2264-2270, 2011.
[29] S. Reese and D. Christ, “Finite deformation pseudo-elasticity of shape memory alloys-constitutive modelling and finite element implementation,” International Journal of Plasticity, vol. 24, pp. 455-482, 2008.
[30] J. H. Chung, J. S. Heo, and J. J. Lee, “Modeling and numerical simulation of the pseudoelastic behavior of shape memory alloy circular rods under tension–torsion combined loading,” Smart Materials and Structures, vol. 15, pp. 1651-1660, 2006.
[31] 趙起平, “Modified Phase-Field simulation of magnetoelastic domain in ferromagnetic shape memory alloys,” 台灣大學應用力學所碩士班論文, 2011.
[32] M. A. Savi, A. Paiva, A. P. Baeta-Neves and P. M. C. L. Pacheco, “Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model,” Journal of intelligent material systems and structures, vol. 13, pp. 261-273, 2002.
[33] J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali and S. Sohrabpour, “A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation,” Continuum Mechanics and Thermodynamics, vol. 22, pp. 345-362, 2010.
[34] J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, “A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings,” International Journal of Plasticity, vol. 26, pp. 976-991, 2010.
[35] O. Adiguzel, “Smart materials and the influence of atom sizes on martensite microstructures in copper-based shape memory alloys,” Journal of materials processing technology, vol. 185, pp. 120-124, 2007.
[36] 顏睿亨, “Application of Multirank Lamination Theory to the Modeling of Ferroelectric and Martensitic Materials,” 台灣大學應用力學所博士班論文, 2008.
[37] 魏羽傑, “Application of Multirank Lamination to the Simulation of Polarization Switching in Rhombohedral Ferroelectric Crystals,” 台灣大學應用力學所碩士班論文, 2011.
[38] 邱柏榮, “Simulation of Domain Patterns in Two-dimensional Ferroelectric Thin Films,” 台灣大學應用力學所碩士班論文, 2009.
[39] K. Bhattacharya, microstructure of martensite: Oxford University Press, 2003.
[40] Y. C. Shu and J. H. Yen, “Multivariant model of martensitic microstructure in thin films,” Acta materialia, vol. 56, pp. 3969-3981, 2008.
[41] M. Huang and L. C. Brinson, “Multivariant model for single crystal shape memory alloy behavior,” Journal of the Mechanics and Physics of Solids, vol. 46, pp. 1379-1409, 1998.
[42] A. Sadjadpour and K. Bhattacharya, “A micromechanics inspired constitutive model for shape-memory alloys: the one-dimensional case,” Smart Materials and Structures, vol. 16, pp. S51-S62, 2007.
[43] A. Sadjadpour and K. Bhattacharya, “A micromechanics-inspired constitutive model for shape-memory alloys,” Smart Materials and Structures, vol. 16, pp. 1751-1765, 2007.
[44] H. Y. Kuo, Y. C. Shu, H. Z. Chen, C. J. Hsueh, C. H. Wang, and Y. H. Chu, “Investigation of nanodomain pattern and piezoelectric behavior of mixed phases in epitaxial BiFeO3 films,” Journal of the European Ceramic Society, vol. 31, pp. 3063-3071, 2011.
[45] 薛淳仁, “Investigation of abnormally large dielectric/piezoelectric response of ferroelectrics near morphotropic phase boundary,” 台灣大學應用力學所碩士班論文, 2011.
[46] J. H. Yen, Y. C. Shu, J. Shieh and J. H. Yeh, “A study of electromechanical switching in ferroelectric single crystals,” Journal of the Mechanics and Physics of Solids, vol. 56, pp. 2117-2135, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64802-
dc.description.abstract本文建立一個有別於現象學角度的麻田散鐵模型,使用多階層狀微結構理論來探討形狀記憶合金之力熱耦合性質與其相變過程。本文以立方晶-正方晶固態對固態相變為例,考量高溫相為立方晶結構的沃斯田鐵與低溫相為正方晶結構的麻田散鐵。文中考量具應變諧和的多階層狀麻田散鐵微結構與沃斯田鐵兩相層狀結構,並利用層狀體積分率來描述晶相的組成與演化過程。
本文使用三種控制方式模擬相變過程,分別為應力控制、應變控制和溫度控制,其結果與實驗上大致相同。以應力、應變控制為例,高溫時可觀察出,施加的應力或應變釋放後會使材料恢復原狀,這符合記憶合金中的擬彈性特性。另外,當溫度超過相變溫度,會使在低溫變形的麻田散鐵材料恢復原狀,此現象稱為形狀記憶效應。由模擬的結果中可發現到應變諧和對遲滯的影響甚大,在不滿足諧和的情況下,遲滯會較為明顯。
zh_TW
dc.description.abstractInstead of choosing phenomenological models to describe thermoelastic martensitic phase transformation, the thesis develops a model based on multirank laminated microstructure to study it. Suppose the high temperature phase has a cubic symmetry and the low temperature phase possesses a tetragonal symmetry. A cubic-to-tetragonal solid-to-solid phase transformation is proposed to demonstrate this model. Here, the austenite phase alternates periodically with the martensite phase which consists of compatible tiny banded microstructure. The local volume fractions of low rank structure are used to describe different symmetry related variants and their magnitudes vary at the emerging of new phases.
The evolution of variants is simulated under stress/strain/temperature control, and the results are qualitatively in agreement with experimental observations. For example, either stress or strain control will result in no permanent deformation at the removal of loads, giving rise to pseudoelastic behavior. In addition, at low temperature, the deformed martensitic material will recover its original shape when it is heated above the transformation temperature, giving rise to shape-memory behavior. Finally, the simulations results show that strain incompatibility plays an important role on the width of hysteresis. It grows as the incompatibility effect is enhanced.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:39Z (GMT). No. of bitstreams: 1
ntu-101-R99543020-1.pdf: 2859047 bytes, checksum: dbe7ef6cbff711d4f8b127d04687ed08 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章 導論 1
1.1 研究背景 1
1.2 形狀記憶效應與擬彈性 4
1.3 研究動機 9
1.4 本文架構 10
第2章 模型與理論架構 11
2.1 微結構晶格相變 11
2.2 多階層狀結構理論 12
2.3 能量原理 18
2.4 總應變及晶相內應力 20
2.5 應力及應變控制邊界關係式 21
2.6 熱力學驅動力及晶域壁阻力 23
第3章 數值方法與計算 27
3.1 求解驅動力 27
3.2 晶域壁移動機制 28
3.3 計算流程 29
第4章 模擬結果與分析 33
4.1 應力控制 34
4.2 應變控制 38
4.3 溫度控制 43
第5章 結論與未來展望 49
5.1 結論 49
5.2 未來展望 49
參考文獻 51
附錄A 諧和位置 57
附錄B 麻田散鐵微觀與宏觀間彈性能的轉換 64
附錄C 向量 的解析解 67
附錄D 驅動力 69
dc.language.isozh-TW
dc.title以多階層狀結構理論模擬形狀記憶合金之相變研究zh_TW
dc.titleApplication of Multirank Lamination Theory to the Simulation of Phase Transformation in Shape Memory Alloysen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳國慶,薛承輝
dc.subject.keyword多階層狀結構,形狀記憶合金,應變諧和,相變,遲滯效應,zh_TW
dc.subject.keywordmultirank laminated microstructure,shape-memory alloy,strain compatibility,phase transformation,hysteresis,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved