Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64798
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻
dc.contributor.authorShao-Hsuan Changen
dc.contributor.author章韶軒zh_TW
dc.date.accessioned2021-06-16T22:59:35Z-
dc.date.available2016-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] Carlson KH, Bourne WM, Mclaren JW, Brubaker RF. Variations in Human Corneal Endothelial-Cell Morphology and Permeability to Fluorescein with Age. Experimental Eye Research 1988;47(1):27-41.
[2] Bourne WM. Clinical estimation of corneal endothelial pump function. Trans Am Ophthalmol Soc 1998;96:229-239; discussion 239-242.
[3] Maurice DM. The location of the fluid pump in the cornea. J Physiol 1972;221(1):43-54.
[4] Fischbarg J, Lim JJ. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. J Physiol 1974;241(3):647-675.
[5] Polse KA, Brand R, Mandell R, Vastine D, Demartini D, Flom R. Age differences in corneal hydration control. Invest Ophthalmol Vis Sci 1989;30(3):392-399.
[6] Riley MV, Winkler BS, Starnes CA, Peters MI, Dang L. Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases. Invest Ophthalmol Vis Sci 1998;39(11):2076-2084.
[7] Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 2003;22(3):359-389.
[8] Bourne WM, Nelson LR, Hodge DO. Continued endothelial cell loss ten years after lens implantation. Ophthalmology 1994;101(6):1014-1022; discussion 1022-1013.
[9] Dikstein S, Maurice DM. The metabolic basis to the fluid pump in the cornea. J Physiol 1972;221(1):29-41.
[10] Kim SY, Sah WJ, Lim YW, Hahn TW. Twenty percent alcohol toxicity on rabbit corneal epithelial cells - Electron microscopic study. Cornea 2002;21(4):388-392.
[11] Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res 2003;22(1):69-94.
[12] Ma L, Kuang K, Smith RW, Rittenband D, Iserovich P, Diecke FP, et al. Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium. Exp Eye Res 2007;84(4):790-798.
[13] Harvitt DM, Bonanno JA. Oxygen consumption of the rabbit cornea. Invest Ophthalmol Vis Sci 1998;39(2):444-448.
[14] Waring GO, 3rd, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 1982;89(6):531-590.
[15] Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem 2002;277(21):19139-19144.
[16] Kuang K, Yiming M, Wen Q, Li Y, Ma L, Iserovich P, et al. Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. Exp Eye Res 2004;78(4):791-798.
[17] Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 2005;19(1):76-78.
[18] Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol 1999;10(6):1337-1345.
[19] Fischbarg J, Diecke FP, Iserovich P, Rubashkin A. The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force. J Membr Biol 2006;210(2):117-130.
[20] Diecke FP, Ma L, Iserovich P, Fischbarg J. Corneal endothelium transports fluid in the absence of net solute transport. Biochim Biophys Acta 2007;1768(9):2043-2048.
[21] Wang Q, Margolis B. Apical junctional complexes and cell polarity. Kidney Int 2007;72(12):1448-1458.
[22] Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 2006;169(6):1901-1909.
[23] Aronson PS, Giebisch G. Mechanisms of chloride transport in the proximal tubule. Am J Physiol 1997;273(2 Pt 2):F179-192.
[24] Rector FC, Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 1983;244(5):F461-471.
[25] Denker BM, Sabath E. The biology of epithelial cell tight junctions in the kidney. J Am Soc Nephrol;22(4):622-625.
[26] Shah M, Quigley R, Baum M. Maturation of rabbit proximal straight tubule chloride/base exchange. Am J Physiol 1998;274(5 Pt 2):F883-888.
[27] Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A;107(17):8011-8016.
[28] Liang M, Knox FG. Nitric oxide enhances paracellular permeability of opossum kidney cells. Kidney Int 1999;55(6):2215-2223.
[29] Bukanov NO, Husson H, Dackowski WR, Lawrence BD, Clow PA, Roberts BL, et al. Functional polycystin-1 expression is developmentally regulated during epithelial morphogenesis in vitro: downregulation and loss of membrane localization during cystogenesis. Human Molecular Genetics 2002;11(8):923-936.
[30] Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 1978;77(3):853-880.
[31] Dulbecco R, Okada S. Differentiation and morphogenesis of mammary cells in vitro. Proc R Soc Lond B Biol Sci 1980;208(1173):399-408.
[32] Kennedy BG, Lever JE. Regulation of Na+,K+-ATPase activity in MDCK kidney epithelial cell cultures: role of growth state, cyclic AMP, and chemical inducers of dome formation and differentiation. J Cell Physiol 1984;121(1):51-63.
[33] Warth R. Potassium channels in epithelial transport. Pflugers Arch 2003;446(5):505-513.
[34] Su HW, Yeh HH, Wang SW, Shen MR, Chen TL, Kiela PR, et al. Cell confluence-induced activation of signal transducer and activator of transcription-3 (Stat3) triggers epithelial dome formation via augmentation of sodium hydrogen exchanger-3 (NHE3) expression. J Biol Chem 2007;282(13):9883-9894.
[35] Valentich JD, Tchao R, Leighton J. Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK. J Cell Physiol 1979;100(2):291-304.
[36] Misfeldt DS, Hamamoto ST, Pitelka DR. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A 1976;73(4):1212-1216.
[37] Sugahara K, Caldwell JH, Mason RJ. Electrical currents flow out of domes formed by cultured epithelial cells. J Cell Biol 1984;99(4 Pt 1):1541-1544.
[38] Oberleithner H, Vogel U, Kersting U. Madin-Darby Canine Kidney-Cells .1. Aldosterone-Induced Domes and Their Evaluation as a Model System. Pflugers Archiv-European Journal of Physiology 1990;416(5):526-532.
[39] Ramirez-Rodriguez G, Ortiz-Lopez L, Benitez-King G. Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C. J Pineal Res 2007;42(2):180-190.
[40] Hagiwara M, McNamara DB, Chen IL, Fisher JW. Role of endogenous prostaglandin E2 in erythropoietin production and dome formation by human renal carcinoma cells in culture. J Clin Invest 1984;74(4):1252-1261.
[41] Zucchi I, Bini L, Albani D, Valaperta R, Liberatori S, Raggiaschi R, et al. Dome formation in cell cultures as expression of an early stage of lactogenic differentiation of the mammary gland. Proceedings of the National Academy of Sciences of the United States of America 2002;99(13):8660-8665.
[42] Lever JE. Regulation of dome formation in kidney epithelial cell cultures. Ann N Y Acad Sci 1981;372:371-383.
[43] Taub M. Retinoic acid inhibits basement membrane protein biosynthesis while stimulating dome formation by Madin Darby canine kidney cells in hormonally defined serum-free medium. J Cell Physiol 1991;148(2):211-219.
[44] Dreher D, Rochat T. Hyperoxia induces alkalinization and dome formation in MDCK epithelial cells. Am J Physiol 1992;262(2 Pt 1):C358-364.
[45] Lever JE. Regulation of dome formation in differentiated epithelial cell cultures. J Supramol Struct 1979;12(2):259-272.
[46] Gaush CR, Hard WL, Smith TF. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 1966;122(3):931-935.
[47] McRoberts JA, Erlinger S, Rindler MJ, Saier MH, Jr. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl. J Biol Chem 1982;257(5):2260-2266.
[48] Ishikawa T, Marunaka Y, Rotin D. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+. J Gen Physiol 1998;111(6):825-846.
[49] Mahieu I, Becq F, Wolfensberger T, Gola M, Carter N, Hollande E. The expression of carbonic anhydrases II and IV in the human pancreatic cancer cell line (Capan 1) is associated with bicarbonate ion channels. Biol Cell 1994;81(2):131-141.
[50] Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 2004;447(5):549-565.
[51] Hanwell D, Ishikawa T, Saleki R, Rotin D. Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin-Darby canine kidney cells. J Biol Chem 2002;277(12):9772-9779.
[52] Yamada T, Yoshikawa M, Takaki M, Torihashi S, Kato Y, Nakajima Y, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells 2002;20(1):41-49.
[53] Hori R, Yamamoto K, Saito H, Kohno M, Inui K. Effect of aminoglycoside antibiotics on cellular functions of kidney epithelial cell line (LLC-PK1): a model system for aminoglycoside nephrotoxicity. J Pharmacol Exp Ther 1984;230(3):724-728.
[54] MacCallum A, Hardy SP, Everest PH. Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. Microbiology 2005;151(Pt 7):2451-2458.
[55] Mariadason JM, Barkla DH, Gibson PR. Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. Am J Physiol 1997;272(4 Pt 1):G705-712.
[56] Ho SB, Yan PS, Dahiya R, Neuschwander-Tetri BA, Basbaum C, Kim YS. Stable differentiation of a human colon adenocarcinoma cell line by sodium butyrate is associated with multidrug resistance. J Cell Physiol 1994;160(2):213-226.
[57] Van Toan N, Ng CH, Aye KN, Trang TS, Stevens WF. Production of high-quality chitin and chitosan from preconditioned shrimp shells. Journal of Chemical Technology and Biotechnology 2006;81(7):1113-1118.
[58] Prabaharan M, Mano JF. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydrate Polymers 2006;63(2):153-166.
[59] Prabaharan M, Borges JP, Godinho MH, Mano JF. Liquid crystalline behavior of chitosan in formic, acetic, and monochloroacetic acid solutions. Advanced Materials Forum Iii, Pts 1 and 2 2006;514-516:1010-1014.
[60] Prabaharan M, Rodriguez-Perez MA, de Saja JA, Mano JF. Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B Appl Biomater 2007;81(2):427-434.
[61] Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21(24):2589-2598.
[62] Fakhry A, Schneider GB, Zaharias R, Senel S. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 2004;25(11):2075-2079.
[63] Lin SJ, Jee SH, Hsiao WC, Yu HS, Tsai TF, Chen JS, et al. Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials 2006;27(8):1462-1469.
[64] Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A 2009;15(8):2001-2013.
[65] Shao HJ, Chen CS, Lee YT, Wang JH, Young TH. The phenotypic responses of human anterior cruciate ligament cells cultured on poly(epsilon-caprolactone) and chitosan. J Biomed Mater Res A;93(4):1297-1305.
[66] Masuoka K, Ishihara M, Asazuma T, Hattori H, Matsui T, Takase B, et al. The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials 2005;26(16):3277-3284.
[67] Choi JS, Yoo HS. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A;95(2):564-573.
[68] Vinay P, Gougoux A, Lemieux G. Isolation of a pure suspension of rat proximal tubules. Am J Physiol 1981;241(4):F403-411.
[69] Castillo AM, Reyes JL, Sanchez E, Mondragon R, Meza I. 2,3-butanedione monoxime (BDM), a potent inhibitor of actin-myosin interaction, induces ion and fluid transport in MDCK monolayers. J Muscle Res Cell Motil 2002;23(3):223-234.
[70] Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12(1):9-18.
[71] Danen EH, Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol 2001;189(1):1-13.
[72] Aplin AE, Stewart SA, Assoian RK, Juliano RL. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 2001;153(2):273-282.
[73] Yee KL, Weaver VM, Hammer DA. Integrin-mediated signalling through the MAP-kinase pathway. Iet Systems Biology 2008;2(1):8-15.
[74] Chen YH, Chung YC, Wang IJ, Young TH. Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials;33(5):1336-1342.
[75] Slaughter RS, Smart CE, Wong DS, Lever JE. Lysosomotropic agents and inhibitors of cellular transglutaminase stimulate dome formation, a differentiated characteristic of MDCK kidney epithelial cell cultures. J Cell Physiol 1982;112(1):141-147.
[76] Lechner JF, Haugen A, McClendon IA, Pettis EW. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro 1982;18(7):633-642.
[77] Bertolero F, Kaighn ME, Camalier RF, Saffiotti U. Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes. In Vitro Cell Dev Biol 1986;22(7):423-428.
[78] Chung SD, Alavi N, Livingston D, Hiller S, Taub M. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J Cell Biol 1982;95(1):118-126.
[79] Giron-Calle J, Vioque J, Pedroche J, Alaiz M, Yust MM, Megias C, et al. Chickpea protein hydrolysate as a substitute for serum in cell culture. Cytotechnology 2008;57(3):263-272.
[80] Fassolitis AC, Novelli RM, Larkin EP. Serum Substitute in Epithelial-Cell Culture Media - Nonfat Dry Milk Filtrate. Applied and Environmental Microbiology 1981;42(2):200-203.
[81] Kokko JP. Proximal Tubule Potential Difference - Dependence on Glucose, Hco3, and Amino-Acids. Journal of Clinical Investigation 1973;52(6):1362-1367.
[82] Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Investigative Ophthalmology & Visual Science 2004;45(3):800-806.
[83] Wu WC, Ye M, Yan WT, Lu F, Qu J, Wang QM, et al. Using basement membrane of human amniotic membrane as a cell carrier for cultivated cat corneal endothelial cell transplantation. Current Eye Research 2007;32(3):199-215.
[84] Hsiue GH, Lai JY, Chen KH, Hsu WM. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation 2006;81(3):473-476.
[85] Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation 2007;84(10):1222-1232.
[86] Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. Faseb Journal 2006;20(2):392-394.
[87] Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T, et al. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006;27(4):607-614.
[88] Honda N, Mimura T, Usui T, Amano S. Descemet Stripping Automated Endothelial Keratoplasty Using Cultured Corneal Endothelial Cells in a Rabbit Model. Archives of Ophthalmology 2009;127(10):1321-1326.
[89] Proulx S, Audet C, Uwamaliya JD, Deschambeault A, Carrier P, Giasson CJ, et al. Tissue Engineering of Feline Corneal Endothelium Using a Devitalized Human Cornea as Carrier. Tissue Engineering Part A 2009;15(7):1709-1718.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64798-
dc.description.abstract角膜內皮層在角膜中具有相當重要的生理功能,主要為維持角膜的清澈度,並且已知無法於體內再生。由於角膜捐贈的來源短缺大大地限制了角膜移植手術,然而角膜的需求量卻持續增加。再者,非免疫代償性功能失調以及異體移植產生的排斥反應亦可能造成移植手術的失敗。 因此在本研究中,我們發展了一種新方法培養大鼠近端腎小管細胞並以該細胞作為提供角膜內皮來源的替代物。 我們利用幾丁聚醣為培養基材並評估其對近端腎小管細胞的影響,以膠原蛋白培養基材作為對照組。培養在幾丁聚醣上的近端腎小管細胞表現顯著的生長及ERK活化,在第八天達到滿盤的狀態,細胞分化出現並伴隨運輸性上皮的特徵-圓頂化的呈現。細胞圓頂化現象被認為是平行於體內管狀分支主動運輸功能的體外表現。穿上皮電阻的評估顯示培養在幾丁聚醣的近端腎小管細胞具有很高的跨上皮運輸功能。此外,Na+-K+ ATPase 的螢光顯示其位於細胞基底側且完整的表現。而Na+-K+ ATPase 對維持角膜內皮層的功能有重要的影響。近端腎小管細胞層之取得必須連同幾丁聚醣薄膜,薄膜可藉由簡單方法製備而成。細胞層之ZO-1以及Na+-K+ ATPase 的免疫螢光染色幾乎完整表現。掃描式電子顯微觀察顯示細胞層上的細胞呈卵圓狀並具有絨毛。將該細胞層片植入兔子角膜之後表面。然而,異種移植的結果並不能維持角膜基質適當的水合度。我們的結果為近端腎小管細胞提供新的培養方法,以幾丁聚醣作為培養基材對於腎小管功能發育的研究或許會是一個有用的工具,而幾丁聚醣細胞層片對於未來臨床應用亦同樣具有可期待的發展與潛力。
關鍵詞:角膜內皮層;腎小管近端細胞;幾丁聚醣;圓頂化;主動運輸
zh_TW
dc.description.abstractThe corneal endothelium is physiologically the most important monolayer of the cornea and plays a pivotal part on the maintenance of corneal transparency and is not known to regenerate in vivo. Several corneal transplantations have been greatly restricted due to the global shortage of donor corneas, whereas the demands for corneal grafts have been gradually increasing. Furthermore, Non-immunologic endothelial decompensation and allograft endothelial rejection may lead to progressive graft failure. In the present study, we developed a novel method for primary culture of rat proximal tubule cells (PTCs) as an alternative for graft material. We evaluated the effects of chitosan membrane on the primary cultured rat PTCs by comparing with collagen surface. Rat PTCs cultured on chitosan surface displayed a prominent expression of proliferation marker and ERK activation. 8 days after reaching confluence, PTCs showed specific characteristic of transporting epithelia, the formation of domes, which mimic the onset of differentiation. Dome formation is thought to parallel tubular differentiation and morphogenesis in vivo and represents the result of active water transport. The transepithelial electrical resistance evaluation revealed that differentiated PTCs established on chitosan surface exhibited high capacity for transepithelial fluid transport. Moreover, Immunofluorescence revealed that the Na+-K+ ATPase, which is critical for the proper physiological function of the corneal endothelium, was ubiquitously expressed and localized to the cell-to-cell borders. These cultured PTCs were harvested as intact monolayer cell sheets with chitosan film which prepared via simple process. Immunostaining for ZO-1, Na+-K+ ATPase was positive in the cell sheet. Scanning electron microscopy indicated that these cells were primarily cobblestone-shaped morphology with numerous microvilli. Rat PT cell sheets were placed onto the posterior surface of the transplanted rabbit cornea. However, the results of xenograft transplantation showed the fabricated sheets failed of maintaining proper stromal hydration in vivo. Our results implicate that chitosan membrane would be a valuable tool for studying the function and development of proximal tubule cells, as well as supporting the value of harvested cell sheets for clinical applications.
Key word: corneal endothelium, proximal tubule cells, chitosan, dome formation, pump function
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:35Z (GMT). No. of bitstreams: 1
ntu-101-R99548051-1.pdf: 10919403 bytes, checksum: ceabd801674c368f78994cbdce0eaa2c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsFigures IV
中文摘要 VIII
Abstract IX
Chapter 1 Literature review 1
1-1 Corneal endothelium 1
1-2 Fluid transport across leaky epithelia : the role of tight junction 3
1-3 Renal proximal tubule 6
1-4 The formation of domes 9
1-4.1 Dome is the in vitro character of transporting epithelia 9
1-4.2 Molecular mecganism that influence dome formation 11
1-4.3 Dome formation is associated with epithelial differentiation from development to disease 11
1-5 The properties and applications of chitosan 13
Chapter 2 Materials and Methods
2-1 Materials 16
2-2 Instruments 19
2-3 Preparation of solution 21
2-4 Preparation of chitosan-coated plates and chitosan film 22
2-5 Isolation of rat proximal tubules 23
2-6 Dome formation in PTCs 25
2-7 Measurement of transepithelial electrical resistance 25
2-8 Immunofluroescence staining 27
2-9 Western blotting 27
2-10 Scanning electron microscopy 28
2-11 Alkaline phosphatase assay 28
2-12 Transplatation of rat PTC sheets into a rabbit model 29
2-13 Statistical analysis 30
Chapter 3 Results 31
3-1 Morphology and growth of primary cultured PTCs 31
3-2 Expression of Differentiated renal functions 32
3-2.1 The morphology and expression of ZO-1 35
3-2.2 Brush-border enzyme activity. 36
3-2.3 The validation of dome formation and transepithelial electric resistance 37
3-2.4 The expression and localization of alpha-1 subunit Na+-K+ ATPase 39
3-3 The PTC sheets harvesting with chitosan film 40
3-4 Scanning electron microscopy 41
3-5 Evaluation of rat PTCs in reconstructed rabbit cornea receiving a cultured PTC sheet transplant 42
Chapter 4 Discussion 43
Chapter 5 Conclusion 48
References 49
Appendix 58
dc.language.isoen
dc.subject角膜內皮層zh_TW
dc.subject腎小管近端細胞zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject圓頂化zh_TW
dc.subject主動運輸zh_TW
dc.subjectcorneal endotheliumen
dc.subjectproximal tubule cellsen
dc.subjectchitosanen
dc.subjectdome formationen
dc.subjectpump functionen
dc.title評估以腎小管近端上皮細胞作為角膜內皮層之自體移植基材zh_TW
dc.titlevaluation the use of proximal tubule cells as autograft materials for corneal endotheliumen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王一中,黃昭淵
dc.subject.keyword角膜內皮層,腎小管近端細胞,幾丁聚醣,圓頂化,主動運輸,zh_TW
dc.subject.keywordcorneal endothelium,proximal tubule cells,chitosan,dome formation,pump function,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
10.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved