Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64793
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正(Liao, Wen-Cheng)
dc.contributor.authorHuy-Cuong Nguyenen
dc.contributor.author阮輝強zh_TW
dc.date.accessioned2021-06-16T22:59:26Z-
dc.date.available2012-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citationReference
[1] Richard P., and Cheyrezy M., “Composition of reactive powder concretes,” Cement and Concrete Research, vol. 25, no. 7, pp. 1501-1511, 1995.
[2] Malik A.R. , Foster S.J, “An Investigation into the Behaviour of Reactive Powder Concrete Columns,” Progress in Mechanics of Structures and Materials, 19th Australasian Conference on the Mechanics of Structures and Materials, ACMSM 19, Christchurch, New Zealand, pp. 693-698, 2006.
[3] Sadrekarimi A., “Development of a Light Weight Reactive Powder Concrete ” Journal of Advanced Concrete Technology vol. Vol. 2, No. 3, 409-417, October 2004 2004.
[4] Warnock R., “Short-term and Time-dependent Flexural Behaviour of Steel Fiber-reinforced Reactive Powder Concrete,” PhD Dissertation, University of New South Wales, 2005.
[5] O'Neil E. F., Neeley B. D., and Cargile J. D., “Tensile properties of very-high-strength concrete for penetration-resistant structures,” Shock and Vibration, vol. 6, no. 5, pp. 237-245, 1999.
[6] Lavanya Prabha S., Dattatreya J.K., Neelamegam M., Seshagiri Rao M.V., “Study on Stress-Strain Properties of Reactive Powder Concrete under Uniaxial Compression,” Engineering and Applied Sciences, 2010.
[7] Jungwirth J., “Effect of Age on Stress-strain Response of UHPC,” Graybeal 2006, 2002.
[8] Cheng J.P., “活性粉混凝土構件之工程性質研究,” PhD Dissertation, National Taiwan Universitry, 2003.
[9] Robert Park, Thomas Paulay, “Reinforced Concrete Structures,” Wiley, 1975/7/23 - 769, 1975.
[10] Teng M. Q., “Plastic-damage model of lightweight concrete and normal weight concrete,” PhD Dissertation, Department of Civil Engineering, National University of Singapore, 2010.
[11] Omidi O., Lotfi V., “Numerical Analysis Of Cyclically Loaded Concrete Under Large Tensile Strains By The Plastic-Damage Model,” Scientia Iranica, Vol. Transaction A: Civil Engineering, pp. 194-208, 2010.
[12] Lubliner J., Oliver J., Oller S., “A plastic-damage model for concrete,” International Journal of Solids and Structures, vol. 25, no. 3, pp. 299-326, 1989.
[13] Lee J., Fenves G. L., “Plastic-Damage Model for Cyclic Loading of Concrete Structures,” Journal of Engineering Mechanics, vol. 124, no. 8, 1998.
[14] Goto Y., Kumar G. P., and Kawanishi N., “Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-Filled Concrete” Journal of Structural Engineering, vol. 136, no. 11, pp. 1413-1422, 2010.
[15] Lu X. Z., Ye L. P., Teng J. G., and Jiang J. J., “Bond–slip models for FRP sheets/plates bonded to concrete,”Engineering Structure, 27(6), pp. 920-937, 2005b.
[16] Lu X. Z., Ye L. P., Teng J. G., and Jiang J. J., “Mesoscale finite-element model for FRP sheets/plates bonded to concrete,”Engineering Structure, 27(4), pp. 564–575, 2005a.
[17] Neagoe C. A., “Concrete Beams Reinforced With VFRP Laminates ” Master thesis - Universitat Politecnica de Catalunya, 2011.
[18] Banthia N., Bisby L., Cheng R. (2006) “An Introduction to FRP Composites for Construction”, The ISIS Canada Education Committee, Educational Modules, Educational Modules.
[19] Buyukozturk O. and Hearing B., “Crack Propagation in Concrete Composites Influenced by Interface Fracture Parameters,” International Journal of Solids and Structures, vol. 35 pp. 4055-4066, 1998.
[20] Gunes O., Karaca E., and Gunes B., “Design of FRP Retrofitted Flexural Members Against Debonding Failures ” Earthquake Engineering Research Institute, 499 14 th St, Suite 320, Oakland, CA, 94612-1934, USA, no. 1205, 2006.
[21] Arduini M., and Nanni. A, “Parametric Study of Beams with Externally Bonded FRP Reinforcement,” Structural Journal, vol. 94, no. 5, pp. 493-501, September 1, 1997, 1997.
[22] Ritchie P., Thomas D., Lu W.L., and Connelly G., “External Reinforcement of Concrete Beams Using Fiber Reinforced Plastics,” ACI Structural Journal, vol. 88, pp. 490-500, 1991.
[23] Buyukozturk O., and Hearing, B., “Failure Behavior of Precracked Concrete Beams Retrofitted with FRP,” ASCE Journal of Composites for Construction, vol. 2, no. 3, pp. 138-144, 1998.
[24] Simulia, “ABAQUS Example Problems Manual 6.10,” 2009.
[25] Simulia, “ABAQUS/CAE User's Manual 6.10,” 2009.
[26] Simulia, “ABAQUS Analysis User's Manual 6.10,” 2009.
[27] Pavel Pevsner R. L., Nsieri E. and Rutenberg A. “Benchmark II: Numerical Analyses for Masonry Vault,” PROHITECH WP8 - Israel Institute of Technology, Haifa 32000, Israel
[28] Kmiecik P., and Kamiński M., “Modeling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration,” Archives of Civil and Mechanical Engineering, vol. 11, no. 3, pp. 623-636, 2011.
[29] Linde P., Pleitner J., DeBoer H. and Carmone C., “Modelling and simulation of fiber metal laminates,” ABAQUS User's Conference. Boston, Massachusetts, pp. 421-439, 2004.
[30] Ladeveze P., Lemaitre J., “Damage effective stress in quasi-unilateral material conditions,” The 16th international congress of theoretical and applied mechanics, Lyngby, Denmark, 1984.
[31] Matzenmiller A., Lubliner J., and Taylor R. L., “A constitutive model for anisotropic damage in fiber-composites,” Mechanics of Materials, vol. 20, no. 2, pp. 125-152, 1995.
[32] Lapczyk I., and Hurtado J. A., “Progressive damage modeling in fiber-reinforced materials,” Composites Part A: Applied Science and Manufacturing, vol. 38, no. 11, pp. 2333-2341, 2007.
[33] S. Murakami, “Notion of Continuum Damage Mechanics and Its Application to Anisotropic Creep Damage Theory,” Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 105, no. 2, pp. 99-105, 1983.
[34] C.-H. Chang, “Mechanical Analysis of Aggregate-Coated FRP-Concrete Composite Beams,” Master thesis - National Taiwan University, 2010.
[35] W.-Y. Ke, “FRP-RPC Mechanics of Concrete Composite Beam Analysis ” Master thesis - National Taiwan University, 2009.
[36] Smith, S.T., Teng, J.G., “FRP-strengthened RC beams. I: review of debonding strength models,” Engineering Structures, 24, pp. 385-395, 2002a.
[37] Smith, S.T., Teng, J.G., “FRP-strengthened RC beams. II: assessment of debonding strength models,” Engineering Structures, 24, pp. 397-417, 2002b.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64793-
dc.description.abstractStrengthening of concrete members using fiber reinforced plastic (FRP) has emerged as a viable technique to retrofit/repair deteriorated infrastructure. In this study, the flexural performance of concrete beams strengthened with FRP plates has been investigated by means of a Finite Element analysis. The work reported in this thesis deals with the analytical models, proposed to predict the behavior of concrete members strengthened with externally bonded FRP plates, including normal concrete and reactive powder concrete (RPC). The surface – based cohesive behavior is also captured to represent the interfacial bonding between concrete and FRP. The results of the numerical simulations are used to confirm the experimental results in previous researches. The numerical results show an excellent agreement with the measured data.en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:26Z (GMT). No. of bitstreams: 1
ntu-101-R99521719-1.pdf: 3727829 bytes, checksum: 3763b0d6ade13ec22bbde3006921db56 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTABLE OF CONTENTS
ACKNOWLEDGEMENTS i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
NOTATION AND SYMBOLS xi
CHAPTER 1 INTRODUCTION 1
1.1. Background and Motivations 1
1.2. Research Objectives 2
1.3. Thesis Organization 3
CHAPTER 2 LITERATURE REVIEW 5
2.1. Reactive Powder Concrete 5
2.1.1 Introduction 5
2.1.2 Mechanical Behavior of RPC 6
2.2. Finite Element Modeling of Concrete 9
2.3. Fiber-Reinforced Plastic 14
2.3.1 Introduction 14
2.3.2 Finite Element Modeling of FRP 16
2.4. FRP – Concrete Interfacial Behavior Law 18
2.5. FRP Flexural Strengthening for Concrete Beams 20
2.5.1 Failure Modes 21
2.5.2 Theoretical load-deflection behavior of typical RC beams 23
2.5.3 Theoretical load-deflection behavior of typical strengthened RC beams 24
2.5.4 Behavior of FRP Retrofitted Beams in Flexure 25
CHAPTER 3 FINITE ELEMENT MODELING 27
3.1. Introduction 27
3.2. ABAQUS Nonlinear Concrete Models 29
3.3. Concrete Damaged Plasticity Model 31
3.3.1 Plasticity behavior 32
3.3.2 Uniaxial Tension and Compression Stress Behavior 34
3.3.3 Damage Parameters 36
3.4. FRP Model 37
3.4.1 Material models for damage 38
3.4.2 Fiber/matrix failure 38
3.4.3 Delamination model 42
3.5. Surface-Based Cohesive Behavior 43
3.6. Finite Element Modeling of FRP-Concrete Composite Beams 47
3.6.1 Concrete part 47
3.6.2 FRP part 47
3.6.3 Bond – Slip Behavior 48
3.7. Finite Element Modeling of FRP-RPC Composite Beams 52
3.7.1 RPC part 52
3.7.2 FRP part 53
3.7.3 Bond – Slip Behavior 53
CHAPTER 4 RESULTS AND DISCUSSIONS 55
4.1. Numerical Results of FRP-Concrete Composite Beams 55
4.1.1 General 55
4.1.2 Uniaxial Compressive Tests of Concrete 55
4.1.3 Uniaxial Tensile Test of FRP 56
4.1.4 Four-Point Bending Test of Concrete Beams 57
4.1.5 Four-Point Bending Test of FRP-Concrete Composite Beams 58
4.2. Numerical Results of FRP-RPC Composite Beams 60
4.2.1 General 60
4.2.2 Uniaxial Compressive Tests of RPC 61
4.2.3 Uniaxial Tensile Test of FRP 61
4.2.4 Four-Point Bending Test of RPC Beams 62
4.2.5 Four-Point Bending Test of FRP Formworks 63
4.2.6 Four-Point Bending Test of FRP-RPC Composite Beams 64
4.3. Recommendation for Simulating Cohesive Behavior 67
CHAPTER 5 CONCLUSIONS AND RECOMENDATIONS 69
5.1. Conclusions 69
5.2. Recommendations 70
Reference 71
APPENDIX A – Input File 111
APPENDIX B – Figure for ABAQUS Input 119
dc.language.isoen
dc.subject塑損傷模zh_TW
dc.subjectFRPzh_TW
dc.subjectABAQUSzh_TW
dc.subject有限元素分析zh_TW
dc.subject活性粉混凝土zh_TW
dc.subjectFRP-RPC 複合梁zh_TW
dc.subjectABAQUSen
dc.subjectFRPen
dc.subjectReactive Powder Concreteen
dc.subjectfinite element analysisen
dc.subjectFRP-RPC composite beamsen
dc.subjectplastic-damage modelen
dc.titleFRP混凝土及FRP活性粉混凝土複合構件撓曲行為模擬研究zh_TW
dc.titleSimulation of Flexural Behavior of FRP-Concrete and FRP-RPC Composite Membersen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹穎雯(Chan, Yin-Wen),劉楨業(Tony C. Liu)
dc.subject.keywordFRP,活性粉混凝土,有限元素分析,FRP-RPC 複合梁,塑損傷模,ABAQUS,zh_TW
dc.subject.keywordFRP,Reactive Powder Concrete,finite element analysis,FRP-RPC composite beams,plastic-damage model,ABAQUS,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved