Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor繆希椿
dc.contributor.authorWan-Chen Chengen
dc.contributor.author程婉珍zh_TW
dc.date.accessioned2021-06-16T22:59:08Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citation1. Herrmann, J., Lerman, L.O. & Lerman, A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation research 100, 1276-1291 (2007).
2. Gareau, J.R. & Lima, C.D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature reviews. Molecular cell biology 11, 861-871 (2010).
3. Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275, 6252-6258 (2000).
4. Johnson, E.S. Protein modification by SUMO. Annual review of biochemistry 73, 355-382 (2004).
5. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature reviews. Molecular cell biology 8, 947-956 (2007).
6. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual review of cell and developmental biology 22, 159-180 (2006).
7. Johnson, E.S., Schwienhorst, I., Dohmen, R.J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. The EMBO journal 16, 5509-5519 (1997).
8. Gong, L., Li, B., Millas, S. & Yeh, E.T. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS letters 448, 185-189 (1999).
9. Lee, G.W. et al. Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. The Journal of biological chemistry 273, 6503-6507 (1998).
10. Hochstrasser, M. SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5-8 (2001).
11. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120 (2002).
12. Sapetschnig, A. et al. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. The EMBO journal 21, 5206-5215 (2002).
13. Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744 (2001).
14. Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. The Journal of biological chemistry 277, 19961-19966 (2002).
15. Bailey, D. & O'Hare, P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. The Journal of biological chemistry 279, 692-703 (2004).
16. Denu, J.M. & Dixon, J.E. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Current opinion in chemical biology 2, 633-641 (1998).
17. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699-711 (2004).
18. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annual review of immunology 27, 485-517 (2009).
19. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179-189 (2006).
20. Mangan, P.R. et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231-234 (2006).
21. Yang, X.O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. The Journal of biological chemistry 282, 9358-9363 (2007).
22. Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28, 29-39 (2008).
23. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484-487 (2007).
24. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480-483 (2007).
25. King, C., Ilic, A., Koelsch, K. & Sarvetnick, N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117, 265-277 (2004).
26. Fina, D. et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 134, 1038-1048 (2008).
27. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. The Journal of biological chemistry 278, 1910-1914 (2003).
28. Kataoka, K., Nishizawa, M. & Kawai, S. Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. Journal of virology 67, 2133-2141 (1993).
29. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K.T. & Kawai, S. v-maf, a viral oncogene that encodes a 'leucine zipper' motif. Proceedings of the National Academy of Sciences of the United States of America 86, 7711-7715 (1989).
30. Fujiwara, K.T., Kataoka, K. & Nishizawa, M. Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8, 2371-2380 (1993).
31. Kataoka, K. et al. Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Molecular and cellular biology 15, 2180-2190 (1995).
32. Takagi, Y. et al. MafT, a new member of the small Maf protein family in zebrafish. Biochemical and biophysical research communications 320, 62-69 (2004).
33. Matsuoka, T.A. et al. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proceedings of the National Academy of Sciences of the United States of America 101, 2930-2933 (2004).
34. Kataoka, K., Fujiwara, K.T., Noda, M. & Nishizawa, M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Molecular and cellular biology 14, 7581-7591 (1994).
35. Kerppola, T.K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-3158 (1994).
36. Yang, Y. & Cvekl, A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. The Einstein journal of biology and medicine : EJBM 23, 2-11 (2007).
37. Ring, B.Z., Cordes, S.P., Overbeek, P.A. & Barsh, G.S. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307-317 (2000).
38. Kim, J.I., Li, T., Ho, I.C., Grusby, M.J. & Glimcher, L.H. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proceedings of the National Academy of Sciences of the United States of America 96, 3781-3785 (1999).
39. Ho, I.C., Tai, T.S. & Pai, S.Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nature reviews. Immunology 9, 125-135 (2009).
40. Leavenworth, J.W., Ma, X., Mo, Y.Y. & Pauza, M.E. SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. J Immunol 183, 1110-1119 (2009).
41. Lin, B.S. et al. SUMOylation attenuates c-Maf-dependent IL-4 expression. European journal of immunology 40, 1174-1184 (2010).
42. Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J Immunol 182, 6226-6236 (2009).
43. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183, 797-801 (2009).
44. Rutz, S. et al. Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nature immunology 12, 1238-1245 (2011).
45. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature immunology 11, 854-861 (2010).
46. Rutz, S. et al. Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nature immunology (2011).
47. Wang, S.W. & Speck, N.A. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Molecular and cellular biology 12, 89-102 (1992).
48. Cohen, M.M., Jr. Perspectives on RUNX genes: an update. American journal of medical genetics. Part A 149A, 2629-2646 (2009).
49. Look, A.T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059-1064 (1997).
50. Bae, S.C. & Lee, Y.H. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366, 58-66 (2006).
51. Zeng, C. et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-alpha transcription factors. Proceedings of the National Academy of Sciences of the United States of America 94, 6746-6751 (1997).
52. Javed, A. et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. Journal of cell science 113 ( Pt 12), 2221-2231 (2000).
53. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. The Journal of experimental medicine 206, 51-59 (2009).
54. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature immunology 8, 145-153 (2007).
48. Cohen, M.M., Jr. Perspectives on RUNX genes: an update. American journal of medical genetics. Part A 149A, 2629-2646 (2009).
49. Look, A.T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059-1064 (1997).
50. Bae, S.C. & Lee, Y.H. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366, 58-66 (2006).
51. Zeng, C. et al. Id entification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-alpha transcription factors. Proceedings of the National Academy of Sciences of the United States of America 94, 6746-6751 (1997).
52. Javed, A. et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. Journal of cell science 113 ( Pt 12), 2221-2231 (2000).
53. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. The Journal of experimental medicine 206, 51-59 (2009).
54. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature immunology 8, 145-153 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64780-
dc.description.abstract研究指出轉錄因子c-Maf在第二型輔助T細胞(Th2)當中能夠調控介白素四(IL-4)的基因表現,在我們實驗室之前的研究發現酪胺酸磷酸化與SUMO化的轉譯後修飾,都是調控轉錄因子c-Maf功能重要的一環,經由SUMO化修飾會減弱c-Maf所調控的介白素四 (IL-4)的表現,以及經由酪胺酸磷酸化修飾的c-Maf則會增強介白素四的表現,在其他的研究指出c-Maf 在輔助型T淋巴球當中能夠調控介白素十 (IL-10)、介白素二十一 (IL-21)與介白素二十二 (IL-22)的表現。在我的實驗當中發現在小鼠T淋巴瘤细胞 (EL4 cells)當中,經由酪胺酸磷酸化修飾的c-Maf會增強介白素十的表現,並且利用染色質沉澱技術 (chromatin immunoprecipitation analysis)發現c-Maf的酪胺酸磷酸化對介白素十的啟動子有較強的DNA結合能力,而在第十七型輔助T細胞 (Th17)也發現c-Maf的酪胺酸磷酸化會增強介白素十與介白素二十一的表現。zh_TW
dc.description.abstractc-Maf was discovered as a transcription factor of IL-4 to regulate Th2-specific Il4 gene expression. Previous studies in our lab has shown that post-transcriptional modifications, such as tyrosine-phosphorylation and SUMOylation, are important to regulate c-Maf function. Furthermore, SUMOylation attenuates c-Maf-dependent IL-4 expression. Whereas, the tyrosine-phospholated c-Maf enhances the IL-4 production. c-Maf mediates IL-21, IL-10 and IL-22 expression in Th cells. In this study, we domostrate that the phosphorylation of c-Maf enhances the IL-10 production in EL4 cells through increases the c-Maf DNA binding ability. In taddition, the IL-10 and IL-21 production are enhanced by phosphorylated c-Maf in Th17 cells.
 
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:08Z (GMT). No. of bitstreams: 1
ntu-101-R99449010-1.pdf: 1353461 bytes, checksum: e03fbece91a425370d86603960a2fca9 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Chapter 1. Introduction 1
1.1 SUMO-a reversible post-translational protein modifier 1
1.2 Tyrosine phosphorylation 2
1.3 The differentiation of Th17 cells 3
1.4 An overview of c-Maf 4
1.5 Rationale and approaches 6
Chapter 2. Experimental Materials 7
2.1 Mice 7
2.2 Chemicals and Reagents 7
2.3 Enzymes and Cytokines 10
2.4 Antibodies 11
2.5 Kits 11
2.6 Medium, solutions and buffers 12
2.7 Vectors 16
Chapter 3. Experimental Methods 17
3.1 Cell culture, transfection and electroporation 17
3.2 In vitro Th17 cells differentiation and stimulation 17
3.3 Intracellular cytokine staining 18
3.4 Preparation of retroviruses 18
3.5 Retrovious transduction 19
3.6 Chromatin immunoprecipitation assay 19
3.7 Quantitative PCR analysis 21
3.8 Statistical analysis 21
Chapter 4. Results 22
4.1 The phosphorylation of c-Maf enhances the IL-10 and IL-21 production in Th17 cells. 22
4.2 The phosphorylation of c-Maf influence the IL-10 and IL-21 production probably through DNA binding ability in Th17 cells. 24
Chapter 5. Discussion 26
5.1 The SUMOylation of c-Maf attenuates the IL-4 production and the phosphorylation of c-Maf enhances the IL-4 production throuth DNA binding. 26
5.2 K33R c-Maf did not influence IL-10 and IL-21 mRNA expression level in Th17 cells. 27
5.3 IL-22 mRNA could not be detected in Th17 cells. 27
5.4 The tyrosine-phosphorylation and SUMOylation of c-Maf may influence the IL-10 and IL-21 mRNA expression in Tr1 cells. 29
Figures 30
Figure 1. IL-17, IFN-γ and IL-4 were analyzed by flow cytometry for Th17 skewing cells. 30
Figure 2. Construction of pMIGRI-HA-c-Maf-flag series. 31
Figure 3. Expression of pMIGRI-HA-flag, pMIGRI-HA-c-Maf-flag and pMIGRI-HA-Y3F c-Maf-flag in EL4 cells. 33
Figure 4. The Il4 and Il10 genes expression after WT c-Maf, Y3F c-Maf electroporation in EL4 cells. 35
Figure 5. The Il10 and Il21 genes expression in WT c-Maf, Y3F c-Maf or K33R c-Maf retroviral transducted in Th17 cells. 37
Figure 6. The diagram of experimental design. 38
Figure 7. DNA fragments product by sonication. 39
Figure 8. The primer design of Il10, Il21 and Il22 promoter to perform the ChIP assay. 40
Figure 9. The phosphorylation of c-Maf affect IL-4 and IL-10 production through DNA binding ability in EL4 cells. 42
Figure 10. Construction of GFP-RV-c-Maf-flag series. 43
References 44
Part 2 52
Characterization of Runx3-modulated IFN-γ expression 52
Chapter 1. Introduction 52
1.1 Runx family 52
1.2 Rationale 53
Chapter 2. Experimental Materials 55
2.1 Mice 55
2.2 Vectors 55
Chapter 3. Experimental Methods 56
3.1 Western blotting 56
3.2 Luciferase assay 56
Chapter 4. Results 57
NMTS Domain of Runx3 is the T-bet interacting site to regulate IFN-γcooperatively. 57
Chapter 5. Discussion 59
Figure 60
Figure 11. The Full length NMTS domain of Runx3 control the synergistic effect of T-bet-induced IFN-γ production. 62
References 63
dc.language.isoen
dc.subject細胞激素zh_TW
dc.subjectc-Mafen
dc.title探討在第十七型輔助性T細胞中SUMO化與酪胺酸磷酸化之c-Maf對於細胞激素基因的結合機轉zh_TW
dc.titleRecruitment of SUMOylated and tyrosine-phospholated c-Maf to c-Maf mediated cytokine genes in Th17 cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee司徒惠康,伍安怡
dc.subject.keyword細胞激素,zh_TW
dc.subject.keywordc-Maf,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved