請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64763完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉怜(Yuh-Lien Chen) | |
| dc.contributor.author | Ling-Yi Hung | en |
| dc.contributor.author | 洪菱憶 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:58:45Z | - |
| dc.date.available | 2015-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | Akoz, T., Gideroglu, K., and Akan, M. (2002). Combination of different techniques for the treatment of earlobe keloids. Aesthetic Plast Surg 26, 184-188.
Al-Attar, A., Mess, S., Thomassen, J.M., Kauffman, C.L., and Davison, S.P. (2006). Keloid pathogenesis and treatment. Plast Reconstr Surg 117, 286-300. Alster, T.S., and Williams, C.M. (1995). Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet 345, 1198-1200. Bayat, A., Arscott, G., Ollier, W.E., Ferguson, M.W., and Mc Grouther, D.A. (2004). Description of site-specific morphology of keloid phenotypes in an Afrocaribbean population. Br J Plast Surg 57, 122-133. Bayat, A., and McGrouther, D.A. (2005). Clinical management of skin scarring. Skinmed 4, 165-173. Bock, O., Schmid-Ott, G., Malewski, P., and Mrowietz, U. (2006). Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297, 433-438. Bock, O., Yu, H., Zitron, S., Bayat, A., Ferguson, M.W., and Mrowietz, U. (2005). Studies of transforming growth factors beta 1-3 and their receptors I and II in fibroblast of keloids and hypertrophic scars. Acta Derm Venereol 85, 216-220. Borgognoni, L. (2002). Biological effects of silicone gel sheeting. Wound Repair Regen 10, 118-121. Borok, T.L., Bray, M., Sinclair, I., Plafker, J., LaBirth, L., and Rollins, C. (1988). Role of ionizing irradiation for 393 keloids. Int J Radiat Oncol Biol Phys 15, 865-870. Brissett, A.E., and Sherris, D.A. (2001). Scar contractures, hypertrophic scars, and keloids. Facial Plast Surg 17, 263-272. Brown, R.L., Ormsby, I., Doetschman, T.C., and Greenhalgh, D.G. (1995). Wound healing in the transforming growth factor-beta-deficient mouse. Wound Repair Regen 3, 25-36. Burd, A., and Chan, E. (2002). Keratinocyte-keloid interaction. Plast Reconstr Surg 110, 197-202. Candia, A.F., Watabe, T., Hawley, S.H., Onichtchouk, D., Zhang, Y., Derynck, R., Niehrs, C., and Cho, K.W. (1997). Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467-4480. Chang, C.W., and Ries, W.R. (2001). Nonoperative techniques for scar management and revision. Facial Plast Surg 17, 283-288. Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37-40. Chen, F., and Weinberg, R.A. (1995). Biochemical evidence for the autophosphorylation and transphosphorylation of transforming growth factor beta receptor kinases. Proc Natl Acad Sci U S A 92, 1565-1569. Chen, M.A., and Davidson, T.M. (2005). Scar management: prevention and treatment strategies. Curr Opin Otolaryngol Head Neck Surg 13, 242-247. Chen, W., Fu, X., Sun, X., Sun, T., Zhao, Z., and Sheng, Z. (2003). Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res 113, 208-216. Chen, Y., Shi-Wen, X., van Beek, J., Kennedy, L., McLeod, M., Renzoni, E.A., Bou-Gharios, G., Wilcox-Adelman, S., Goetinck, P.F., Eastwood, M., et al. (2005). Matrix contraction by dermal fibroblasts requires transforming growth factor-beta/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am J Pathol 167, 1699-1711. Chin, G.S., Liu, W., Peled, Z., Lee, T.Y., Steinbrech, D.S., Hsu, M., and Longaker, M.T. (2001). Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 108, 423-429. Ching, L.M., Browne, W.L., Tchernegovski, R., Gregory, T., Baguley, B.C., and Palmer, B.D. (1998). Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxifylline with the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid: concomitant reduction of serum tumour necrosis factor-alpha and enhancement of anti-tumour activity. Br J Cancer 78, 336-343. Clark, R.A., McCoy, G.A., Folkvord, J.M., and McPherson, J.M. (1997). TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol 170, 69-80. Connell, P.G., and Harland, C.C. (2000). Treatment of keloid scars with pulsed dye laser and intralesional steroid. J Cutan Laser Ther 2, 147-150. D'Amato, R.J., Loughnan, M.S., Flynn, E., and Folkman, J. (1994). Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91, 4082-4085. de Oliveira, G.V., Nunes, T.A., Magna, L.A., Cintra, M.L., Kitten, G.T., Zarpellon, S., and Raposo Do Amaral, C.M. (2001). Silicone versus nonsilicone gel dressings: a controlled trial. Dermatol Surg 27, 721-726. Diegelmann, R.F., Cohen, I.K., and Kaplan, A.M. (1981). The role of macrophages in wound repair: a review. Plast Reconstr Surg 68, 107-113. Diegelmann, R.F., and Evans, M.C. (2004). Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9, 283-289. Gabbiani, G. (2003). The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200, 500-503. Geitz, H., Handt, S., and Zwingenberger, K. (1996). Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 31, 213-221. Gelati, M., Corsini, E., Frigerio, S., Pollo, B., Broggi, G., Croci, D., Silvani, A., Boiardi, A., and Salmaggi, A. (2003). Effects of thalidomide on parameters involved in angiogenesis: an in vitro study. J Neurooncol 64, 193-201. Geng, Y., Valbracht, J., and Lotz, M. (1996). Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. J Clin Invest 98, 2425-2430. Goto, D., Yagi, K., Inoue, H., Iwamoto, I., Kawabata, M., Miyazono, K., and Kato, M. (1998). A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF-beta signals. FEBS Lett 430, 201-204. Greenhalgh, D.G. (1998). The role of apoptosis in wound healing. Int J Biochem Cell Biol 30, 1019-1030. Grimes, P.E., and Hunt, S.G. (1993). Considerations for cosmetic surgery in the black population. Clin Plast Surg 20, 27-34. Grinnell, F. (1984). Fibronectin and wound healing. J Cell Biochem 26, 107-116. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7, 2135-2148. Hocevar, B.A., Brown, T.L., and Howe, P.H. (1999). TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18, 1345-1356. Hoffman, S. (1982). Radiotherapy for keloids. Ann Plast Surg 9, 265. Ignotz, R.A., and Massague, J. (1986). Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261, 4337-4345. Kamamoto, F., Paggiaro, A.O., Rodas, A., Herson, M.R., Mathor, M.B., and Ferreira, M.C. (2003). A wound contraction experimental model for studying keloids and wound-healing modulators. Artif Organs 27, 701-705. Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270, 16483-16486. Karin, M. (1996). The regulation of AP-1 activity by mitogen-activated protein kinases. Philos Trans R Soc Lond B Biol Sci 351, 127-134. Karrow, N.A., McCay, J.A., Brown, R.D., Musgrove, D.L., Pettit, D.A., Munson, A.E., Germolec, D.R., and White, K.L., Jr. (2000). Thalidomide stimulates splenic IgM antibody response and cytotoxic T lymphocyte activity and alters leukocyte subpopulation numbers in female B6C3F1 mice. Toxicol Appl Pharmacol 165, 237-244. Keller, H., Kunz, W., and Muckter, H. (1956). [N-phthalyl-glutamic acid imide; experimental studies on a new synthetic product with sedative properties]. Arzneimittelforschung 6, 426-430. Kiil, J. (1977). Keloids treated with topical injections of triamcinolone acetonide (kenalog). Immediate and long-term results. Scand J Plast Reconstr Surg 11, 169-172. Kumar, A., Middleton, A., Chambers, T.C., and Mehta, K.D. (1998). Differential roles of extracellular signal-regulated kinase-1/2 and p38(MAPK) in interleukin-1beta- and tumor necrosis factor-alpha-induced low density lipoprotein receptor expression in HepG2 cells. J Biol Chem 273, 15742-15748. Kuo, Y.R., Wu, W.S., Jeng, S.F., Huang, H.C., Yang, K.D., Sacks, J.M., and Wang, F.S. (2005a). Activation of ERK and p38 kinase mediated keloid fibroblast apoptosis after flashlamp pulsed-dye laser treatment. Lasers Surg Med 36, 31-37. Kuo, Y.R., Wu, W.S., Jeng, S.F., Wang, F.S., Huang, H.C., Lin, C.Z., and Yang, K.D. (2005b). Suppressed TGF-beta1 expression is correlated with up-regulation of matrix metalloproteinase-13 in keloid regression after flashlamp pulsed-dye laser treatment. Lasers Surg Med 36, 38-42. Lanning, D.A., Diegelmann, R.F., Yager, D.R., Wallace, M.L., Bagwell, C.E., and Haynes, J.H. (2000). Myofibroblast induction with transforming growth factor-beta1 and -beta3 in cutaneous fetal excisional wounds. J Pediatr Surg 35, 183-187; discussion 187-188. Lee, S.S., Yosipovitch, G., Chan, Y.H., and Goh, C.L. (2004). Pruritus, pain, and small nerve fiber function in keloids: a controlled study. J Am Acad Dermatol 51, 1002-1006. Lenz, W. (1988). A short history of thalidomide embryopathy. Teratology 38, 203-215. Lenz, W., and Knapp, K. (1962). Thalidomide embryopathy. Arch Environ Health 5, 100-105. Linder, E., Stenman, S., Lehto, V.P., and Vaheri, A. (1978). Distribution of fibronectin in human tissues and relationship to other connective tissue components. Ann N Y Acad Sci 312, 151-159. Lv, P., Luo, H.S., Zhou, X.P., Chireyath Paul, S., Xiao, Y.J., Si, X.M., and Liu, S.Q. (2006). Thalidomide prevents rat liver cirrhosis via inhibition of oxidative stress. Pathol Res Pract 202, 777-788. Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67, 753-791. McCartney-Francis, N.L., Frazier-Jessen, M., and Wahl, S.M. (1998). TGF-beta: a balancing act. Int Rev Immunol 16, 553-580. Mehta, P., and Hussein, M. (2003). Thalidomide as anti-inflammatory therapy for multiple myeloma. Leukemia 17, 2237-2238; author reply 2238. Meyer-Ter-Vehn, T., Gebhardt, S., Sebald, W., Buttmann, M., Grehn, F., Schlunck, G., and Knaus, P. (2006). p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 47, 1500-1509. Milani, S., Herbst, H., Schuppan, D., Stein, H., and Surrenti, C. (1991). Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am J Pathol 139, 1221-1229. Moller, D.R., Wysocka, M., Greenlee, B.M., Ma, X., Wahl, L., Flockhart, D.A., Trinchieri, G., and Karp, C.L. (1997). Inhibition of IL-12 production by thalidomide. J Immunol 159, 5157-5161. Moreira, A.L., Sampaio, E.P., Zmuidzinas, A., Frindt, P., Smith, K.A., and Kaplan, G. (1993). Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177, 1675-1680. Padgett, R.W., Das, P., and Krishna, S. (1998). TGF-beta signaling, Smads, and tumor suppressors. Bioessays 20, 382-390. Pankov, R., and Yamada, K.M. (2002). Fibronectin at a glance. J Cell Sci 115, 3861-3863. Park, G., Yoon, B.S., Moon, J.H., Kim, B., Jun, E.K., Oh, S., Kim, H., Song, H.J., Noh, J.Y., Oh, C., et al. (2008). Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. J Invest Dermatol 128, 2429-2441. Parman, T., Wiley, M.J., and Wells, P.G. (1999). Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5, 582-585. Phan, T.T., Lim, I.J., Aalami, O., Lorget, F., Khoo, A., Tan, E.K., Mukhopadhyay, A., and Longaker, M.T. (2005). Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol 207, 232-242. Pohlers, D., Brenmoehl, J., Loffler, I., Muller, C.K., Leipner, C., Schultze-Mosgau, S., Stallmach, A., Kinne, R.W., and Wolf, G. (2009). TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta 1792, 746-756. Poochareon, V.N., and Berman, B. (2003). New therapies for the management of keloids. J Craniofac Surg 14, 654-657. Prado, A.S., and Fontbona, M. (2006). A 1.8-kg keloid of the arm. Plast Reconstr Surg 117, 335-336. Rowland, T.L., McHugh, S.M., Deighton, J., Dearman, R.J., Ewan, P.W., and Kimber, I. (1998). Differential regulation by thalidomide and dexamethasone of cytokine expression in human peripheral blood mononuclear cells. Immunopharmacology 40, 11-20. Rusciani, L., Rossi, G., and Bono, R. (1993). Use of cryotherapy in the treatment of keloids. J Dermatol Surg Oncol 19, 529-534. Sampaio, E.P., Sarno, E.N., Galilly, R., Cohn, Z.A., and Kaplan, G. (1991). Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173, 699-703. Schaeffer, H.J., and Weber, M.J. (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19, 2435-2444. Sekelsky, J.J., Newfeld, S.J., Raftery, L.A., Chartoff, E.H., and Gelbart, W.M. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347-1358. Shah, M., Foreman, D.M., and Ferguson, M.W. (1995). Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108 ( Pt 3), 985-1002. Shannon, E.J., and Sandoval, F. (1995). Thalidomide increases the synthesis of IL-2 in cultures of human mononuclear cells stimulated with Concanavalin-A, Staphylococcal enterotoxin A, and purified protein derivative. Immunopharmacology 31, 109-116. Singer, A.J., and Clark, R.A. (1999). Cutaneous wound healing. N Engl J Med 341, 738-746. Stambe, C., Atkins, R.C., Tesch, G.H., Masaki, T., Schreiner, G.F., and Nikolic-Paterson, D.J. (2004). The role of p38alpha mitogen-activated protein kinase activation in renal fibrosis. J Am Soc Nephrol 15, 370-379. Stewart, C.E.t., and Kim, J.Y. (2006). Application of mitomycin-C for head and neck keloids. Otolaryngol Head Neck Surg 135, 946-950. Swiontkowski, M.F., Hanel, D.P., Vedder, N.B., and Schwappach, J.R. (1999). A comparison of short- and long-term intravenous antibiotic therapy in the postoperative management of adult osteomyelitis. J Bone Joint Surg Br 81, 1046-1050. Tabata, C., Tabata, R., Kadokawa, Y., Hisamori, S., Takahashi, M., Mishima, M., Nakano, T., and Kubo, H. (2007). Thalidomide prevents bleomycin-induced pulmonary fibrosis in mice. J Immunol 179, 708-714. Tseng, L., Tang, M., Wang, Z., and Mazella, J. (2003). Progesterone receptor (hPR) upregulates the fibronectin promoter activity in human decidual fibroblasts. DNA Cell Biol 22, 633-640. Tucci-Viegas, V.M., Hochman, B., Franca, J.P., and Ferreira, L.M. (2010). Keloid explant culture: a model for keloid fibroblasts isolation and cultivation based on the biological differences of its specific regions. Int Wound J 7, 339-348. Turk, B.E., Jiang, H., and Liu, J.O. (1996). Binding of thalidomide to alpha1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor alpha production. Proc Natl Acad Sci U S A 93, 7552-7556. Van Winkle, W., Jr. (1967). Wound contraction. Surg Gynecol Obstet 125, 131-142. Vangelista, A., Frasca, G.M., Severi, B., and Bonomini, V. (1989). The role of myofibroblasts in renal interstitial fibrosis and their relationship with fibronectin and type IV collagen. Contrib Nephrol 70, 135-141. Varga, J., Rosenbloom, J., and Jimenez, S.A. (1987). Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247, 597-604. Wang, Z., Gao, Z., Shi, Y., Sun, Y., Lin, Z., Jiang, H., Hou, T., Wang, Q., Yuan, X., Zhu, X., et al. (2007). Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. J Plast Reconstr Aesthet Surg 60, 1193-1199. Willis, S.A., Zimmerman, C.M., Li, L.I., and Mathews, L.S. (1996). Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol 10, 367-379. Wong, C., Rougier-Chapman, E.M., Frederick, J.P., Datto, M.B., Liberati, N.T., Li, J.M., and Wang, X.F. (1999). Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol 19, 1821-1830. Wu, H., Xu, Z., and Zhang, Y. (2001). [Role of fibronectin in rat pulmonary fibrosis]. Zhonghua Jie He He Hu Xi Za Zhi 24, 40-42. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64763 | - |
| dc.description.abstract | 蟹足腫是異常增生的疤痕組織,具有大量細胞外基質堆積及異常細胞素活性的特徵。許多證據指出,thalidomide (化學名為N-phthalidomidoglutamide) 含有抗血管新生、抗發炎反應、及免疫調節的特性。過去的研究也發現thalidomide具有抗纖維化的療效,能有效減少細胞外基質的堆積。我們將臨床取得的皮膚檢體進行免疫組織染色,發現蟹足腫檢體相較於正常皮膚檢體表現大量的TGF-β1及fibronectin。將正常及蟹足腫檢體所分離出的纖維母細胞進行體外實驗,發現TGF-β1可誘導fibronectin大量表現,在處理thalidomide的組別中發現其能有效的抑制fibronectin產生。而在實驗中也證實了TGF-β1可以活化MAPKs (ERK1/2、p38及JNK) 和SMADs (Smad2及Smad3) 的磷酸化,但在分別先處理PD98059 (ERK抑制劑) 、SB203580 (p38抑制劑) 及SP600125 (JNK抑制劑) 以及Smad3小片段干擾核酸時,發現皆可抑制纖維母細胞表現fibronectin,代表TGF-β1可透過這些訊息傳遞誘導fibronectin的增加。進一步發現thalidomide能有效的抑制p38及Smad3的磷酸化,對於ERK、JNK及Smad2則沒有影響。除此之外,我們也利用電泳遲滯分析法進行細胞核蛋白之AP-1與Smad3/4活性的探討,發現thalidomide可以有效地降低TGF-β1所誘導的AP-1及Smad3/4與DNA結合的活性。利用明膠酶譜法也發現thalidomide可以增加基質金屬蛋白酶MMP9的活性,進而增加fibronectin的降解,以減少fibronectin的表現量。同時我們建立蟹足腫小鼠模式,發現施打thalidomide的小鼠組別確實可以有效的抑制TGF-β1與fibronectin的表現,也減少了蟹足腫纖維母細胞的數量。綜合以上,thalidomide對於蟹足腫疾病具有抗纖維化的療效,可能是透過抑制TGF-β1活化p38及Smad3磷酸化。我們的研究證實了thalidomide對於治療及預防蟹足腫疾病具有極大的潛力。 | zh_TW |
| dc.description.abstract | Keloids are characterized by vigorously continuous production of extracellular matrix protein and aberrant activities of cytokines in the dermis. Growing bodies of evidence indicate that thalidomide, N-phthalidomidoglutamide, has anti-angiogenic, anti-inflammatory, and immunomodulating properties. Thalidomide also possesses the anti-hepato fibrotic effects, due to the reduced TGF-β1 expression. The present study aimed at determining the therapeutic effects of thalidomide on fibronectin expression of transforming growth factor-β (TGF-β)-treated normal and keloid-derived fibroblasts and the underlying mechanism. In surgically removed normal tissue and keloid tissue in human samples, TGF-β1 and fibronectin immunoreactivity was strong in the keloid tissue, but was barely detectable in the normal tissue. TGF-β1 significantly induced fibronectin expression in normal and keloid fibroblasts and the effect was inhibited by pretreatment with thalidomide. TGF-β1 induced MAPKs (ERK1/2, JNK, and p38) and Smad2/3 phosphorylation. Pretreatment with PD98059 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor), or SB203580 (a p38 inhibitor) inhibited the TGF-β1-induced fibronectin expression. Furthermore, pretreatment with thalidomide effectively inhibited the phosphorylation of p38 and Smad-3, but not JNK , ERK and Smad2 induced by TGF-β1. In addition, thalidomide pretreatment effectively inhibited TGF-β-induced AP-1 and Smad3/4 DNA binding activity by electrophoretic mobility shift assay. Moreover, thalidomide treatment caused fibronectin degradation through increasing the activity of matrix metalloproteinase 9 by gelatin zymography. We also found that treatment with thalidomide significantly suppressed the production of TGF-β1 and fibronectin as well as the cell number in the in vivo keloid model. These results suggested that thalidomide exerted antifibrotic effect on keloid and the effect may be mediated by the suppression of the TGF-β-induced p38 and Smad3 signaling. Our findings indicated that thalidomide may be a potential drug candidate for the treatment and prevention of keloids. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:45Z (GMT). No. of bitstreams: 1 ntu-101-R99446017-1.pdf: 3410125 bytes, checksum: eb30cf86e42d32267365a4d108e81052 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 壹、 緒論 4 一、 蟹足腫致病機轉與治療方式 4 1. 流行病學 4 2. 病理學機轉 4 3. 傷口癒合與蟹足腫的關係 5 4. 處理及治療方式 6 二、 參與調控蟹足腫病理機轉的分子 8 1. 乙型轉型生長因子 (TGF-β) 8 2. Mitogen-activated protein kinases (MAPK) 10 3. Sma and Mad Related Family (SMAD) 11 4. Fibronectin 12 三、 Thalidomide 的藥理性質應用與作用機轉 12 四、 研究動機 15 貳、 實驗材料 16 一、儀器設備 16 二、實驗材料與試劑 16 1. 細胞培養 (Cell culture) 16 2. 細胞活性分析法 (MTT assay) 17 3. 西方墨點法 (Western blot assay) 17 4. 小片段干擾RNA 18 5. 組織化學染色 (immunohistochemistry) 18 6. 蘇木精-伊紅色法 (Hematoxylin-eosin staining) 18 7. 免疫細胞化學染色 (Immunocytochemistry) 18 8. 核蛋白萃取 19 9. 核酸凝膠遲滯分析法 (Electrophoretic mobility-shift assay) 19 10. 明膠酶譜法 (Gelatin Zymography) 19 11. 動物實驗 20 12. Creatinine/ BUN濃度測量 20 13. 實驗中所加之藥劑 20 三、 實驗用溶液配方 20 參、 實驗方法 23 1. 人類皮膚纖維母細胞初代培養 23 2. 細胞活性分析 (MTT assay) 23 3. 西方墨點法 (Western blot analysis) 23 4. 小片段干擾RNA 26 5. 組織石蠟包埋 27 6. 免疫組織化學法 (Immunohistochemistry) 28 7. 蘇木精-伊紅染色 (Hematoxylin-Eosin stain) 29 8. 免疫細胞化學染色法 (Immunocytochemistry) 30 9. 核蛋白萃取 31 10. 核酸凝膠電泳遲滯分析法 (Electrophoretic mobility-shift assay) 31 11. 明膠酶譜法 (Gelatin Zymography) 33 12. 動物實驗 33 13. Creatinine 濃度測量 34 14. BUN 濃度測量 35 15. 數據統計分析 35 肆、 實驗結果 36 蟹足腫皮膚組織表現較多TGF-β1及fibronectin 36 以100 μg/mL Thalidomide處理對人類纖維母細胞不具毒性 36 TGF-β1刺激人類纖維母細胞表現fibronectin 36 Thalidomide減少TGF-β1誘發人類纖維母細胞fibronectin的產生 37 探討thalidomide對人類纖維母細胞MAPKs訊息傳遞的影響 37 探討thalidomide對人類纖維母細胞SMADs訊息傳遞的影響 39 Thalidomide 抑制MAPKs下游轉錄因子AP-1的活性 40 AP-1參與TGF-β1刺激人類纖維母細胞fibronectin蛋白的轉錄 41 Thalidomide 抑制SMADs下游轉錄因子Smad3/4的活性 41 Thalidomide促進人類纖維母細胞fibronectin的降解 42 Thalidomide抑制小鼠蟹足腫TGF-β1 及fibronectin表現 43 Thalidomide抑制小鼠蟹足腫細胞增生數量 44 伍、 討論與結論 45 陸、 參考文獻 50 柒、 附圖 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蟹足腫 | zh_TW |
| dc.subject | fibronectin | zh_TW |
| dc.subject | thalidomide | zh_TW |
| dc.subject | 乙型轉型生長因子 | zh_TW |
| dc.subject | keloid | en |
| dc.subject | TGF-β | en |
| dc.subject | thalidomide | en |
| dc.subject | fibronectin | en |
| dc.title | Thalidomide 減少 TGF-β1誘導之蟹足腫纖維母細胞之Fibronectin的表現 | zh_TW |
| dc.title | Thalidomide Suppresses Transforming Growth Factor-β1-Induced Fibronectin Expression in Keloid Fibroblasts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑美(Seu-Mei Wang),江美治(Mei-Chih Chiang),吳建春(Jiahn-Chun Wu),李繼源(Chi-Yuan Li) | |
| dc.subject.keyword | 蟹足腫,乙型轉型生長因子,thalidomide,fibronectin, | zh_TW |
| dc.subject.keyword | keloid,TGF-β,thalidomide,fibronectin, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
