請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64761完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝尚賢(Shang-Hsien Hsieh) | |
| dc.contributor.author | Wei-Ting Chien | en |
| dc.contributor.author | 簡維廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:58:43Z | - |
| dc.date.available | 2021-03-03 | |
| dc.date.copyright | 2020-03-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-25 | |
| dc.identifier.citation | [1] Carley, K. M. (2003). “Dynamic network analysis.” Dynamic social network modelling and analysis workshop summary and papers, P. Pattison, M. Carley, and R. Breiger, eds., National Academies Press, Washington, DC, 133–145.
[2] Carley, K. M. (2005). Dynamic network analysis for counter-terrorism. Pittsburgh: Carnegie Mellon University [3] Chavada, R., Dawood, N., & Kassem, M. (2012). Construction workspace management: the development and application of a novel nD planning approach and tool. Journal of Information Technology in Construction. [4] Fan, C., Zhang, C., & Mostafavi, A. (2018, June). Meta-Network Framework for Analyzing Disaster Management System-of-Systems. In 2018 13th Annual Conference on System of Systems Engineering (SoSE) (pp. 372-378). IEEE. [5] Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, 75, 1046-1053. [6] Gilbert, T., Barr, S., James, P., Morley, J., & Ji, Q. (2018). Software Systems Approach to Multi-Scale GIS-BIM Utility Infrastructure Network Integration and Resource Flow Simulation. ISPRS International Journal of Geo-Information, 7(8), 310. [7] Gottschalk, S. (1996). Separating Axis Theorem. Technical Report TR96-024. Department of Computer Science. University of North Carolina, Chapel Hill, 20- 46. [8] Guo, S. J. (2002). Identification and resolution of work space conflicts in building construction. Journal of construction engineering and management, 128(4), 287- 295. [9] Hao, Q., Shen, W., Xue, Y., & Wang, S. (2010). Task network-based project dynamic scheduling and schedule coordination. Advanced Engineering Informatics, 24(4), 417-427. [10] Harmon, K. M. (2003). Conflicts between owner and contractors: proposed intervention process. Journal of management in Engineering, 19(3), 121-125. [11] Hor, A. E., Gunho, S., Claudio, P., Jadidi, M., & Afnan, A. (2018). A SEMANTIC GRAPH DATABASE FOR BIM-GIS INTEGRATED INFORMATION MODEL FOR AN INTELLIGENT URBAN MOBILITY WEB APPLICATION. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial information Sciences, 4(4). [12] Huynh, J. (2009). Separating axis theorem for oriented bounding boxes. URL:jkh.me/files/tutorials/Separating%20Axis%20Theorem%20for% 20Oriented%20Bounding%20Boxes.pdf. [13] Ismail, A., Nahar, A., & Scherer, R. (2017). Application of graph databases and graph theory concepts for advanced analysing of BIM models based on IFC standard. Proceedings of EGICE. [14] Ismail, A., Strug, B., & Ślusarczyk, G. (2018, June). Building knowledge extraction from BIM/IFC data for analysis in graph databases. In International Conference on Artificial Intelligence and Soft Computing (pp. 652-664). Springer, Cham. [15] Jaffar, N., Tharim, A. A., & Shuib, M. N. (2011). Factors of conflict in construction industry: a literature review. Procedia Engineering, 20, 193-202. [16] Kadri, R. L., & Boctor, F. F. (2018). An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case. European Journal of Operational Research, 265(2), 454-462. [17] Krackhardt, D., & Carley, K. M. (1998). PCANS model of structure in organizations (pp. 113-119). Pittsburgh, Pa, USA: Carnegie Mellon University, Institute for Complex Engineered Systems. [18] Li, Y., Lu, Y., Li, D., & Ma, L. (2015). Metanetwork analysis for project task assignment. Journal of Construction Engineering and Management, 141(12), 04015044. [19] Liu, H., Al-Hussein, M., & Lu, M. (2015). BIM-based integrated approach for detailed construction scheduling under resource constraints. Automation in Construction, 53, 29-43. [20] Mirzaei, A., Nasirzadeh, F., Parchami Jalal, M., & Zamani, Y. (2018). 4D-BIM Dynamic Time–Space Conflict Detection and Quantification System for Building Construction Projects. Journal of Construction Engineering and Management, 144(7), 04018056. [21] Moon, H., Dawood, N., & Kang, L. (2014). Development of workspace conflict visualization system using 4D object of work schedule. Advanced Engineering Informatics, 28(1), 50-65. [22] Nicole, W. Project Management. Retrieved from https://neo4j.com/graphgist/project-management [23] Ock, J. H., & Han, S. H. (2003). Lessons learned from rigid conflict resolution in an organization: Construction conflict case study. Journal of management in engineering, 19(2), 83-89. [24] Parraguez, P., Eppinger, S. D., & Maier, A. M. (2015). Information flow through stages of complex engineering design projects: a dynamic network analysis approach. IEEE Transactions on Engineering Management, 62(4), 604-617. [25] Tao, S., Wu, C., Sheng, Z., & Wang, X. (2018). Space-time repetitive project scheduling considering location and congestion. Journal of Computing in Civil Engineering, 32(3), 04018017. [26] Wang, T., Gao, S., Li, X., & Ning, X. (2018). A meta-network-based risk evaluation and control method for industrialized building construction projects. Journal of cleaner production, 205, 552-564. [27] Wongwai, N., & Malaikrisanachalee, S. (2011). Augmented heuristic algorithm for multi-skilled resource scheduling. Automation in Construction, 20(4), 429- 445. [28] Wu, I., & Chiu, Y. (2010). 4D Workspace conflict detection and analysis system. In Proceedings of the 10th International Conference on Construction Applications of Virtual Reality. [29] Zhu, J., & Mostafavi, A. (2015). An Integrated Framework for the Assessment of the Impacts of Uncertainty in Construction Projects Using Dynamic Network Simulation. In Computing in Civil Engineering 2015 (pp. 355-362). [30] Zhu, J., & Mostafavi, A. (2016). Metanetwork framework for integrated performance assessment under uncertainty in construction projects. Journal of Computing in Civil Engineering, 31(1), 04016042. [31] Zhu, J., & Mostafavi, A. (2016). Dynamic Meta-Network Modeling for an Integrated Project Performance Assessment under Uncertainty. In Construction Research Congress 2016 (pp. 2340-2350). [32] Zhu, J., & Mostafavi, A. (2017, December). Characterization of the underlying mechanisms of vulnerability in complex projects using dynamic network simulation. In 2017 Winter Simulation Conference (WSC) (pp. 2436-2447). IEEE. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64761 | - |
| dc.description.abstract | 工程流程與計畫管理的好壞是一個工程成功與否的關鍵指標,一般來說,工程在執行過程中常會遇到四種衝突包括工項與工項的順序、工項與工人的數量和合適度、工項執行區域間的壅擠和工項與資源分配等衝突。關於個別面向,考慮上述的一個或兩個衝突的研究已經有不少,然而一個完整的方法或框架來偵測四個常常在工程流程中出現的衝突是不常見的。因此,此研究希望利用建築資訊模型(BIM)、動態網絡分析(DNA)和圖形資料庫(GraphDB)來探究四個衝突發生的來源與衝突能夠在整個專案裡面產生的影響程度。此外,此研究會將成果測試於一個水泥預熱鋼構塔的重建工程案子,從此案子的資料中檢測出四個前述的衝突。由於工程計畫本身就是動態且有多種形態的資料,動態網路分析支援多種形態的節點與鏈結的特性就相對適合在此研究中使用。最後的分析結果,除了多個衝突被檢測之外,每個衝突的影響力程度也被計算出來,用於幫助專案經理了解衝突的緊急程度與處理的優先順序。藉由偵測衝突之後的解決衝突,專案的流程也能因此更為順利。 | zh_TW |
| dc.description.abstract | Construction workflow management is one of the most crucial keys to the success of any construction project. Normally, most construction projects would be facing with several construction conflicts which include (1) activity to activity (2) activity to labour (3) activity to location (4) activity to resource conflicts. There is already plenty of research concentrating on one or two aforementioned conflicts. However, only a few holistic methods or frameworks deal with all of those four conflicts which play a great portion in the cause of construction delay. This research aims to integrate Building Information Modelling (BIM), Dynamic Network Analysis (DNA) and graph database (GraphDB) to have a deeper insight into how these four conflicts formed and how they can influence on the whole project. A case study for a cement preheater tower renovation project is also presented. To apply the proposed method, four different scenarios are suggested for the aforementioned conflicts respectively. Taking advantage of the multi-node and multi-link characteristics of the DNA, multiple factors can be taken into consideration in the analysis which is similar to the situation while planning the construction workflow. From the result of the case study, several conflicts are identified and the influence level of conflicts are calculated for the manager to prioritise the adjustments made for resolving them. By eliminating four kinds of detected conflicts through the proposed method, the construction workflow can be improved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:43Z (GMT). No. of bitstreams: 1 ntu-109-R06521604-1.pdf: 3787135 bytes, checksum: 8efe59bc4bb8f752d3b0961f27fefa40 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective 3 Chapter 2 Related Work 4 2.1 Building Information Modelling 4 2.2 Dynamic Network Analysis 5 2.3 Graph Database 6 2.4 Summary 8 Chapter 3 Dynamic network and Graph Database for Identifying Conflict 9 3.1 Abstraction of Project Meta-network 9 3.2 Translation of Conflicts 11 3.3 Identifying Conflicts 15 3.3.1 Activity to Activity conflict 16 3.3.2 Activity to Labour conflict 18 3.3.3 Activity to Location conflict 23 3.3.4 Activity to Resource conflict 29 3.4 Calculating the Influence Indicator 32 Chapter 4 System Design 34 4.1 System Overview 34 4.2 System Module 35 4.2.1 Frontend UI Layer 35 4.2.2 Analysis Logic Layer 36 4.2.3 Backend Storage Layer 37 4.2.4 BIM Model Layer 37 4.3 Data Type 38 Chapter 5 Case Study 42 5.1 Data Collection 44 5.2 Generate Meta-network 44 5.3 Conduct the Analysis 46 5.4 Establish Web System 50 5.5 Route Conflict Analysis 52 5.6 Float Time Calculation 59 5.7 Estimate the Influence 65 Chapter 6 Discussion and Validation 67 6.1 Exploration From Result 67 6.2 Extendibility 69 6.3 Benefits From BIM 69 6.4 Validation 70 Chapter 7 Conclusion 75 REFERENCE 77 APPENDIX 81 | |
| dc.language.iso | en | |
| dc.subject | 動態網絡分析 | zh_TW |
| dc.subject | 建築資訊模型 | zh_TW |
| dc.subject | 工程衝突 | zh_TW |
| dc.subject | 工程管理 | zh_TW |
| dc.subject | 網頁系統 | zh_TW |
| dc.subject | 圖形資料庫 | zh_TW |
| dc.subject | Graph Database | en |
| dc.subject | Building Information Modelling | en |
| dc.subject | Web-based Platform | en |
| dc.subject | Dynamic Network Analysis | en |
| dc.subject | Construction Conflicts | en |
| dc.subject | Construction Management | en |
| dc.title | 基於BIM與動態網絡分析之工程衝突檢測方法與平台實作 | zh_TW |
| dc.title | A web-based Approach to Assessing Conflicts in Construction Work Flow by Integrating BIM and Dynamic Network Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張陸滿(Luh-Maan Chang),曾惠斌(Hui-ping Tserng) | |
| dc.subject.keyword | 動態網絡分析,建築資訊模型,工程衝突,工程管理,網頁系統,圖形資料庫, | zh_TW |
| dc.subject.keyword | Dynamic Network Analysis,Building Information Modelling,Construction Conflicts,Construction Management,Web-based Platform,Graph Database, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202000583 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
