請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李苑玲 | |
| dc.contributor.author | Ying-Ting Tseng | en |
| dc.contributor.author | 曾穎婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:58:40Z | - |
| dc.date.available | 2017-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | Abbot C. (1918). Bleaching discolored teeth by means of 30% Perhydrol and electric light rays. Journal of the Allied Dental Society, 13, 259.
Abe T, Tachibana Y, Uematsu T, & Iwamoto M. (1995). Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate. Journal of the Chemical Society, Chemical Communications(16), 1617-1618. Addy M, Moran J, Griffiths AA, & Wills-Wood NJ. (1985). Extrinsic tooth discoloration by metals and chlorhexidine. I. Surface protein denaturation or dietary precipitation? British Dental Journal, 159(9), 281-285. Al-Salehi S, Wood D, & Hatton P. (2007). The effect of 24h non-stop hydrogen peroxide concentration on bovine enamel and dentine mineral content and microhardness. Journal of Dentistry, 35(11), 845-850. Attin T, Muller T, Patyk A, & Lennon A. (2004). Influence of different bleaching systems on fracture toughness and hardness of enamel. Operative dentistry, 29(2), 188-195. Attin T, Vollmer D, Wiegand A, Attin R, & Betke H. (2005). Subsurface microhardness of enamel and dentin after different external bleaching procedures. American Journal of Dentistry, 18(1), 8-12. Banks WA, & Kastin AJ. (1989). Aluminum-Induced neurotoxicity: Alterations in membrane function at the blood-brain barrier. Neuroscience & Biobehavioral Reviews, 13(1), 47-53. Baratieri LN, Ritter AV, Monteiro S, Jr., Caldeira de Andrada MA, & Cardoso Vieira LC. (1995). Nonvital tooth bleaching: guidelines for the clinician. Quintessence International, 26(9), 597-608. Benetti AR, Valera MC, Mancini MNG, Miranda CB, & Balducci I. (2004). In vitro penetration of bleaching agents into the pulp chamber. International Endodontic Journal, 37(2), 120-124. Benitez F, Acero J, Real F, Rubio F, & Leal A. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research, 35(5), 1338-1343. Bentley C, Leonard RH, Nelson CF, & Bentley SA. (1999). Quantitation of vital bleaching by computer analysis of photographic images. Journal of the American Dental Association, 130(6), 809-816. Blasco T, Corma A, Navarro M, & Pariente JP. (1995). Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. Journal of Catalysis, 156(1), 65-74. Bolt RA, Bosch JJ, & Coops JC. (1994). Influence of window size in small-window colour measurement, particularly of teeth. Physics in Medicine & Biology, 39(7), 1133-1142. Bowles WH, & Thompson LR. (1986). Vital bleaching: the effects of heat and hydrogen peroxide on pulpal enzymes. Journal of Endodontics, 12(3), 108-112. Chao K, Wu C, Chang H, Lee L, & Hu S. (1997). Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. The Journal of Physical Chemistry B, 101(33), 6341-6349. Chen CY, Burkett SL, Li HX, & Davis ME. (1993a). Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 2(1), 27-34. Chen CY, Li HX, & Davis ME. (1993b). Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Materials, 2(1), 17-26. Chng HK, Palamara JEA, & Messer HH. (2002). Effect of hydrogen peroxide and sodium perborate on biomechanical properties of human dentin. Journal of Endodontics, 28(2), 62-67. Cooper JS, Bokmeyer TJ, & Bowles WH. (1992). Penetration of the pulp chamber by carbamide peroxide bleaching agents. Journal of Endodontics, 18(7), 315-317. Corma A, Fornes V, Navarro M, & Perezpariente J. (1994). Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of Catalysis, 148(2), 569-574. Corma A, Martinez A, Martinezsoria V, & Monton J. (1995). Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst. Journal of Catalysis, 153(1), 25-31. Dahl JE, & Pallesen U. (2003). Tooth bleaching--a critical review of the biological aspects. Critical Reviews in Oral Biology & Medicine, 14(4), 292-304. Darbre P. (2006). Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. Journal of Applied Toxicology, 26(3), 191-197. Das TK, Chaudhari K, Chandwadkar AJ, & Sivasanker S. (1995). Synthesis and catalytic properties of mesoporous tin silicate molecular sieves. Journal of the Chemical Society, Chemical Communications(24), 2495-2496. Dayan D, Heifferman A, Gorski M, & Begleiter A. (1983). Tooth discoloration--extrinsic and intrinsic factors. Quintessence International, 14(2), 195-199. Dean HT. (1936). Chronic endemic dental fluorosis. Journal of the American Medical Association, 107(16), 1269. DeMuth P, Hurley M, Wu C, Galanie S, Zachariah MR, & DeShong P. (2010). Mesoscale porous silica as drug delivery vehicles: Synthesis, characterization, and pH-sensitive release profiles. Microporous and Mesoporous Materials, 141(1-3), 128-134. Dibdin G. (1993). The water in human dental enamel and its diffusional exchange measured by clearance of tritiated water from enamel slabs of varying thickness. Caries Research, 27(2), 81-86. Echchahed B, Moen A, Nicholson D, & Bonneviot L. (1997). Iron-modified MCM-48 mesoporous molecular sieves. Chemistry of Materials, 9(8), 1716-1719. Ensing B, Buda F, & Baerends EJ. (2003). Fenton-like chemistry in water: oxidation catalysis by Fe (III) and H2O2. The Journal of Physical Chemistry A, 107(30), 5722-5731. Eriksen HM, & Nordbo H. (1978). Extrinsic discoloration of teeth. Journal of Clinical Periodontology, 5(4), 229-236. Fenton HJH. (1894). Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65(0), 899-910. Freccia WF, & Peters DD. (1982). A technique for staining extracted teeth: a research and teaching aid for bleaching. Journal of Endodontics, 8(2), 67-69. Garberoglio R, & Brannstrom M. (1976). Scanning electron microscopic investigation of human dentinal tubules. Archives of Oral Biology, 21(6), 355-362. Geng XL, Wang Z, Li XQ, & Zhang C. (2005). A simple method for epoxidation of olefins using sodium chlorite as an oxidant without a catalyst. The Journal of Organic Chemistry, 70(23), 9610-9613. Gerlach RW, Barker ML, & Sagel PA. (2002). Objective and subjective whitening response of two self-directed bleaching systems. American Journal of Dentistry, 15 Spec No, 7A-12A. Gokay O, Mujdeci A, & Algn E. (2004). Peroxide penetration into the pulp from whitening strips. Journal of Endodontics, 30(12), 887-889. Gontier S, & Tuel A. (1995). Characterization of vanadium-containing mesoporous silicas. Microporous Materials, 5(3), 161-171. Halmann M. (1996). Photodegradation of water pollution (1st ed.). Boca Raton: CRC Press. Hammad IA. (2003). Intrarater repeatability of shade selections with two shade guides. Journal of Prosthetic Dentistry, 89(1), 50-53. Harrington GW, & Natkin E. (1979). External resorption associated with bleaching of pulpless teeth. Journal of Endodontics, 5(11), 344-348. Haywood VB. (1992). History, safety, and effectiveness of current bleaching techniques and applications of the nightguard vital bleaching technique. Quintessence International, 23(7), 471-488. Haywood VB, & Heymann HO. (1989). Nightguard vital bleaching. Quintessence International, 20(3), 173-176. Hegedus C, Bistey T, Flora-Nagy E, Keszthelyi G, & Jenei A. (1999). An atomic force microscopy study on the effect of bleaching agents on enamel surface. Journal of Dentistry, 27(7), 509-515. In: M Howe-Grant. (1992). Encyclopedia of chemical technology (4th ed., Vol. 4, pp. 290-291). New York: John Wiley and Sons. Inagaki S, Fukushima Y, & Kuroda K. (1993). Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of the Chemical Society, Chemical Communications(8), 680-682. Ishikawa-Nagai S, Sato RR, Shiraishi A, & Ishibashi K. (1994). Using a computer color-matching system in color reproduction of porcelain restorations. Part 3: A newly developed spectrophotometer designed for clinical application. International Journal of Prosthodontics, 7(1), 50-55. Jentys A, Pham NH, Vinek H, Englisch M, & Lercher JA. (1996). Synthesis and characterization of mesoporic materials containing highly dispersed cobalt. Microporous Materials, 6(1), 13-17. Juang LC, Wang CC, & Lee CK. (2006). Adsorption of basic dyes onto MCM-41. Chemosphere, 64(11), 1920-1928. Kawamoto KT, Y. (2004). Effects of the hydroxyl radical and hydrogen peroxide on tooth bleaching. Journal of Endodontics, 30(1), 45-50. Kim JH, Tanabe M, & Niwa M. (1997). Characterization and catalytic activity of the AlMCM-41 prepared by a method of gel equilibrium adjustment. Microporous Materials, 10(1–3), 85-93. Ko CC, Tantbirojn D, Wang T, & Douglas WH. (2000). Optical scattering power for characterization of mineral loss. Journal of Dental Research, 79(8), 1584-1589. Koyano KA, & Tatsumi T. (1997). Synthesis of titanium-containing MCM-41. Microporous Materials, 10(4–6), 259-271. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, & Beck JS. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. Lai SCN, Tay FR, Cheung GSP, Mak YF, Carvalho RM, Wei SHY, Toledano M, Osorio R, & Pashley DH. (2002). Reversal of compromised bonding in bleached enamel. Journal of Dental Research, 81(7), 477-481. Laidler KJ, Meiser JH, & Sanctuary BC. (2003). Physical chemistry (4th ed.). Boston: Houghton Mifflin. Lee BS, Huang LC, Hong CY, Wang SG, Hsu WH, Yamauchi Y, Hsieh CJ, Lai JY, & Wu KCW. (2011). Synthesis of metal ion-histidine complex functionalized mesoporous silica nanocatalysts for enhanced light-free tooth bleaching. Acta Biomaterialia, 7(5), 2276-2284. Lee BS, Huang SH, Chiang YC, Chien YS, Mou CY, & Lin CP. (2008). Development of in vitro tooth staining model and usage of catalysts to elevate the effectiveness of tooth bleaching. Dental Materials, 24(1), 57-66. Lee CH, Lin TS, & Mou CY. (2009). Mesoporous materials for encapsulating enzymes. Nano Today, 4(2), 165-179. Leonard RH, Jr., Garland GE, Eagle JC, & Caplan DJ. (2002). Safety issues when using a 16% carbamide peroxide whitening solution. Journal of Esthetic & Restorative Dentistry: Official Publication of the American Academy of Esthetic Dentistry, 14(6), 358-367. Lewinstein I, Hirschfeld Z, Stabholz A, & Rotstein I. (1994). Effect of hydrogen peroxide and sodium perborate on the microhardness of human enamel and dentin. Journal of Endodontics, 20(2), 61-63. Li H, Lei H, Chen K, Yao C, Zhang X, Leng Q, & Wang W. (2011). A nano‐Fe0/ACF cathode applied to neutral electro‐Fenton degradation of Orange II. Journal of Chemical Technology and Biotechnology, 86(3), 398-405. Lim MY, Lum SOY, Poh RSC, Lee GP, & Lim KC. (2004). An in vitro comparison of the bleaching efficacy of 35% carbamide peroxide with established intracoronal bleaching agents. International Endodontic Journal, 37(7), 483-488. Lindsey ME, & Tarr MA. (2000). Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere, 41(3), 409-417. Link J. (1973). Discoloration of the teeth in alkaptonuria (ochronosis) and Parkinsonism. Chronicle, 36(5), 130. Lopes GC, Bonissoni L, Baratieri LN, Vieira LCC, & Monteiro Jr S. (2002). Effect of bleaching agents on the hardness and morphology of enamel. Journal of Esthetic and Restorative Dentistry, 14(1), 24-30. Lopez A, & Kiwi J. (2001). Modeling the performance of an innovative membrane-based reactor. Abatement of azo dye (Orange II) up to biocompatibility. Industrial & Engineering Chemistry Research, 40(8), 1852-1858. Martyn CN, Coggon DN, Inskip H, Lacey RF, & Young WF. (1997). Aluminum concentrations in drinking water and risk of Alzheimer's disease. Epidemiology, 281-286. McCaslin AJ, Haywood VB, Potter BJ, Dickinson GL, & Russell CM. (1999). Assessing dentin color changes from nightguard vital bleaching. Journal of the American Dental Association, 130(10), 1485-1490. McCracken MS, & Haywood VB. (1996). Demineralization effects of 10 percent carbamide peroxide. Journal of Dentistry, 24(6), 395-398. McMorn P, & Hutchings GJ. (2004). Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chemical Society Reviews, 33(2), 108-122. Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell R, Stucky G, Krishnamurty M, Petroff P, & Firouzi A. (1993). Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261(5126), 1299. Morey M, Davidson A, & Stucky G. (1996). A new step toward transition metal incorporation in cubic mesoporous materials: preparation and characterization of Ti-MCM-48. Microporous Materials, 6(2), 99-104. Nathoo S, Chmielewski M, & Kirkup R. (1994). Effects of Colgate Platinum Professional Toothwhitening System on microhardness of enamel, dentin, and composite resins. Compendium (Newtown, Pa.). Supplement(17), S627-630. Nordbo H, Eriksen HM, Rolla G, Attramadal A, & Solheim H. (1982). Iron staining of the acquired enamel pellicle after exposure to tannic acid or chlorhexidine: preliminary report. Scandinavian Journal of Dental Research, 90(2), 117-123. Nutting EB, & Poe GS. (1963). A new combination for bleaching teeth. Journal of Southern California Dental Association, 31(9), 289-291. Ogunwumi SB, & Bein T. (1997). Intrazeolite assembly of a chiral manganese salen epoxidation catalyst. Chemical Communications(9), 901-902. Parra S, Nadtotechenko V, Albers P, & Kiwi J. (2004). Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on Nafion via Fenton-like processes. The Journal of Physical Chemistry B, 108(14), 4439-4448. Paul S, Peter A, Pietrobon N, & Hammerle CHF. (2002). Visual and spectrophotometric shade analysis of human teeth. Journal of Dental Research, 81(8), 578-582. Pauly TR, Liu Y, Pinnavaia TJ, Billinge SJL, & Rieker TP. (1999). Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures. Journal of the American Chemical Society, 121(38), 8835-8842. Pohto M, & Scheinin A. (1958). Microscopic observations on living dental pulp. I. Method for intravital study of circulation in rat incisor pulp. Acta Odontologica Scandinavica, 16(3), 303-314. Powell LV, & Bales DJ. (1991). Tooth bleaching: its effect on oral tissues. Journal of the American Dental Association, 122(11), 50-54. Pu SB, Kim JB, Seno M, & Inui T. (1997). Isopropylation of polynuclear aromatic hydrocarbons on Al-containing M41S mesoporous catalysts. Microporous Materials, 10(1–3), 25-33. Pugh G, Jr., Zaidel L, Lin N, Stranick M, & Bagley D. (2005). High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp. Journal of Esthetic & Restorative Dentistry: Official Publication of the American Academy of Esthetic Dentistry, 17(1), 40-45; discussion 46-47. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, & Lin VSY. (2004). A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based Gene transfection reagent. Journal of the American Chemical Society, 126(41), 13216-13217. Reddy KM, Moudrakovski I, & Sayari A. (1994). Synthesis of mesoporous vanadium silicate molecular sieves. Journal of the Chemical Society, Chemical Communications(9), 1059-1060. Robert L, & Burwell J. (1957). Sterochemistry and Heterogeneous Catalysis. Chemical Reviews, 57(5), 895-934. Rotstein I, Dankner E, Goldman A, Heling I, Stabholz A, & Zalkind M. (1996). Histochemical analysis of dental hard tissues following bleaching. Journal of Endodontics, 22(1), 23-25. Rotstein I, Lehr Z, & Gedalia I. (1992). Effect of bleaching agents on inorganic components of human dentin and cementum. Journal of Endodontics, 18(6), 290-293. Russell MD, Gulfraz M, & Moss BW. (2000). In vivo measurement of colour changes in natural teeth. Journal of Oral Rehabilitation, 27(9), 786-792. Sabater MJ, Corma A, Domenech A, Fornes V, & Garcia H. (1997). Chiral salen manganese complex encapsulated within zeolite Y: aheterogeneous enantioselective catalyst for the epoxidation ofalkenes. Chemical Communications(14), 1285-1286. Sadasivan S, Khushalani D, & Mann S. (2003). Synthesis and shape modification of organo-functionalised silica nanoparticles with ordered mesostructured interiors. Journal of Materials Chemistry, 13(5), 1023-1029. Seghi RR, & Denry I. (1992). Effects of external bleaching on indentation and abrasion characteristics of human enamel in vitro. Journal of Dental Research, 71(6), 1340-1344. Shannon H, Spencer P, Gross K, & Tira D. (1993). Characterization of enamel exposed to 10% carbamide peroxide bleaching agents. Quintessence International, 24(1), 39. Sheldon RA. (1993). Chirotechnology: Industrial Synthesis of Optically Active Compounds (1st ed.). Boca Raton: CRC Press. Shellis R. (1996). A scanning electron-microscopic study of solubility variations in human enamel and dentine. Archives of Oral Biology, 41(5), 473-484. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, & Siemieniewska T. (1985). Reporting physisorption data for gas/solid systems. Pure and Applied Chemistry, 57(4), 603-619. Slanina P, Frech W, Ekstrom L, Loof L, Slorach S, & Cedergren A. (1986). Dietary citric acid enhances absorption of aluminum in antacids. Clinical Chemistry, 32(3), 539-541. Spasser HF. (1961). A simple bleaching technique using sodium perborate. NewYork State Dental Journal, 27, 332-334. Spitzer D, & Ten Bosch JJ. (1975). The absorption and scattering of light in bovine and human dental enamel. Calcified Tissue Research, 17(2), 129-137. Stober W, Fink A, & Bohn E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69. Steel A, Carr SW, & Anderson MW. (1994). 14 N NMR study of surfactant mesophases in the synthesis of mesoporous silicates. Journal of the Chemical Society, Chemical Communications(13), 1571-1572. Stewart GG. (1965). Bleaching discolored pulpless teeth. Journal of the American Dental Association, 70, 325-328. Sulieman M. (2004). An overview of bleaching techniques: I. History, chemistry, safety and legal aspects. Dental Update, 31(10), 608. Sulieman M, Addy M, MacDonald E, & Rees JS. (2004). The effect of hydrogen peroxide concentration on the outcome of tooth whitening: an in vitro study. Journal of Dentistry, 32(4), 295-299. Sulieman M, Addy M, & Rees JS. (2003). Development and evaluation of a method in vitro to study the effectiveness of tooth bleaching. Journal of Dentistry, 31(6), 415-422. Sundberg RJ, & Martin RB. (1974). Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chemical Reviews, 74(4), 471-517. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, & Inagaki S. (2001). Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Microporous and mesoporous materials, 44–45(0), 755-762. Tanev PT, Chibwe M, & Pinnavaia TJ. (1994). Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 368(6469), 321-323. Tanev PT, & Pinnavaia TJ. (1995). A neutral templating route to mesoporous molecular sieves. Science, 267(5199), 865-867. ten Bosch JJ, & Coops JC. (1995). Tooth color and reflectance as related to light scattering and enamel hardness. Journal of Dental Research, 74(1), 374-380. Thompson KM, Griffith WP, & Spiro M. (1993a). Mechanism of bleaching by peroxides. Part 1.—Kinetics of bleaching of phenolphthalein by hydrogen peroxide at high pH. Journal of the Chemical Society, Faraday Transactions, 89(8), 1203-1209. Thompson KM, Griffith WP, & Spiro M. (1993b). Mechanism of bleaching by peroxides. Part 2.—Kinetics of bleaching of alizarin and crocetin by hydrogen peroxide at high pH. Journal of the Chemical Society, Faraday Transactions, 89(22), 4035-4043. Thompson KM, Spiro M, & Griffith WP. (1996). Mechanism of bleaching by peroxides. Part 4.—Kinetics of bleaching of malvin chloride by hydrogen peroxide at low pH and its catalysis by transition-metal salts. Journal of the Chemical Society, Faraday Transactions, 92(14), 2535-2540. Trong On D, Zaidi S, & Kaliaguine S. (1998). Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions. Microporous and Mesoporous Materials, 22(1-3), 211-224. Truman J. (1864). Bleaching of non-vital discoloured anterior teeth. Dental Times, 1, 69-72. Tuel A, Gontier S, & Teissier R. (1996). Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase. Chemical Communications(5), 651-652. Tung FF, Goldstein GR, Jang S, & Hittelman E. (2002). The repeatability of an intraoral dental colorimeter. Journal of Prosthetic Dentistry, 88(6), 585-590. Unger KK, Giesche H, & Kinkel JN. (1985). German Patent DE-3534, 143.2. Urist MR, & Ibsen KH. (1963). Chemical reactivity of mineralized tissue with oxytetracycline. Archives of pathology, 76, 484. Vaarkamp J, ten Bosch JJ, & Verdonschot EH. (1995). Propagation of light through human dental enamel and dentine. Caries Research, 29(1), 8-13. van der Burgt TP, ten Bosch JJ, Borsboom PC, & Kortsmit WJ. (1990). A comparison of new and conventional methods for quantification of tooth color. Journal of Prosthetic Dentistry, 63(2), 155-162. Van Ginkel M, Van der Voet G, d'Haese P, De Broe M, & De Wolff F. (1993). Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone. The Journal of Laboratory and Clinical Medicine, 121(3), 453. Vogel RI. (1975). Intrinsic and extrinsic discoloration of the dentition (a literature review). Journal of Oral Medicine, 30(4), 99-104. Waerhaug M, Gjermo P, Rolla G, & Johansen JR. (1984). Comparison of the effect of chlorhexidine and CuSO4 on plaque formation and development of gingivitis. Journal of Clinical Periodontology, 11(3), 176-180. Wagner HH, Hausmann H, & Holderich WF. (2001). Immobilization of rhodium diphosphine complexes on mesoporous Al-MCM-41 materials: catalysts for enantioselective hydrogenation. Journal of Catalysis, 203(1), 150-156. Walling C, & Johnson RA. (1975). Fenton's reagent. V. Hydroxylation and side-chain cleavage of aromatics. Journal of the American Chemical Society, 97(2), 363-367. Walling C, & Weil T. (1974). The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution. International Journal of Chemical Kinetics, 6(4), 507-516. Wallman IS, & Hilton HB. (1962). Teeth pigmented by tetracycline. The Lancet, 1(7234), 827-829. Wang CC, Juang LC, Hsu TC, Lee CK, Lee JF, & Huang FC. (2004). Adsorption of basic dyes onto montmorillonite. Journal of Colloid and Interface Science, 273(1), 80-86. Wang Y, Zhang Q, Shishido T, & Takehira K. (2002). Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. Journal of Catalysis, 209(1), 186-196. Watts A, & Addy M. (2001). Tooth discolouration and staining: a review of the literature. British Dental Journal, 190(6), 309-316. Weymann J, & Porteous JR. (1962). Discolouration of the teeth probably due to administration of tetracyclines: A preliminary report. British Dental Journal, 113, 51-54. Yuan ZY, Liu SQ, Chen TH, Wang JZ, & Li HX. (1995). Synthesis of iron-containing MCM-41. Journal of the Chemical Society, Chemical Communications(9), 973-974. Zach L, & Cohen G. (1965). Pulp response to externally applied heat. Oral Surgery, Oral Medicine, Oral Pathology, 19, 515-530. Zantner C, Beheim-Schwarzbach N, Neumann K, & Kielbassa AM. (2007). Surface microhardness of enamel after different home bleaching procedures. Dental Materials, 23(2), 243-250. Zantner C, Derdilopoulou F, Martus P, & Kielbassa AM. (2006). Randomized clinical trial on the efficacy of 2 over-the-counter whitening systems. Quintessence international, 37(9), 695-706. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, & Stucky GD. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279(5350), 548-552. Zhao XS, Bao XY, Guo W, & Lee FY. (2006). Immobilizing catalysts on porous materials. Materials Today, 9(3), 32-39. Zijp J, Ten Bosch JJ, & Groenhuis RAJ. (1995). HeNe-laser light scattering by human dental enamel. Journal of Dental Research, 74(12), 1891-1898. Zsigmond A, Bogar K, & Notheisz F. (2003). Comparative study of 'ship-in-a-bottle' and anchored heterogenized Rh complexes. Journal of Catalysis, 213(1), 103-108. 張芳淑, 高思懷, & 吳嘉麗. (1995). pH 值在 Fenton 系統中所扮演的角色探討. 第 20 屆廢水處理技術研討會論文集, 第6-61-6-67頁. 簡妤珊. (2006). 研發分子篩催化劑在牙齒漂白治療上的應用. 臺灣大學口腔生物科學研究所碩士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64758 | - |
| dc.description.abstract | 接合鐵離子的中孔洞二氧化矽奈米分子篩已被證實是一種有效且不需光照催化的牙齒漂白催化劑,但其理想的反應作用環境與催化劑的穩定性目前仍是不甚清楚。因此本研究的目的是以Fe3+-histidine@Al-MSN做為牙齒漂白催化劑,利用試管及牙齒染色模型為測試模型,評估起始反應pH值與過氧化氫濃度對其漂白化學反應的催化影響效應以及穩定性,進而找出最適合的反應條件,以做為設計診間強力牙齒美白藥劑的參考。試管模型以0.15mM Orange II當作染色劑,在不同的起始反應pH值(pH 3、5、7、9、11)及過氧化氫濃度(0、1、2、4、6、8、10%)的反應條件下,於設定時間點測量溶液pH值與Orange II殘留量,以評估Fe3+-histidine@Al-MSN催化劑的催化效力。同時利用重複使用的方式,將使用過的催化劑回收與新的Orange II與過氧化氫作用,以測試催化劑的穩定性。牙齒染色模型使用0.15mM Orange II染色72小時,再以Fe3+-histidine@Al-MSN催化劑與4%或10%過氧化氫於起始反應pH 7的環境下進行漂白,利用影像分析技術藉由CIE色彩系統進行色彩分析。結果顯示在試管模型中,除了起始反應pH 3組別的pH值維持穩定外,起始反應pH 5、7、9組別在反應進行的前15分鐘內都有pH值下降,且之後穩定的現象。起始反應pH 3、5、7、9組別其最終穩定pH值皆在3~3.5之間,其Fe3+-histidine@Al-MSN催化劑的催化效力明顯優於起始反應pH 11組別;起始反應pH 11組別的pH值只有下降到pH 7左右,不利於類費頓反應進行,因此催化效果較差。當過氧化氫濃度由0%上升到4%,可觀察到催化劑的催化效力隨過氧化氫濃度增加而提升,顯示提升過氧化氫濃度有助於提升催化劑的催化效力;但大於4%過氧化氫組別則會因為高濃度過氧化氫的自由基消除反應,使得催化效力不會隨著過氧化氫濃度增加而提升。在催化劑重複使用後,隨著使用次數增加,催化劑的催化效力有逐漸下降的趨勢,而與4%過氧化氫反應的催化劑其效力下降較少,維持最好的效果。在SEM的觀察下,可發現反應過後的催化劑有分子互相凝結的現象;同時由ICP-MS的研究結果也證實鐵離子及鋁離子有滲漏的現象,這些可能是造成催化劑催化效力下降的原因。在牙齒模型中,Fe3+-histidine@Al-MSN催化劑與4%過氧化氫在起始反應pH 7的環境下進行漂白反應,有與10%過氧化氫組別沒有顯著差異的漂白效果。經由以上實驗,總結Fe3+-histidine@Al-MSN催化劑與4%過氧化氫於起始反應pH 7的條件下進行漂白反應,可做為製作診間強力牙齒美白藥劑的參考。 | zh_TW |
| dc.description.abstract | Several mesoporous silica nanoparticles (MSN) with immobilized ferric or ferrous ions via histidine have been reported as efficient catalysts for light-free tooth bleaching. However, the optimal working environment and the catalyst stability are still unclear. The purpose of this study was to investigate the effects of initial environmental pH, concentration of H2O2, and the stability of catalysts on the tooth bleaching reaction using Fe3+-histidine@Al-MSN as the catalyst, and furthermore to find out the best reacting condition for in-office power bleaching. Orange II (0.15mM) was selected as the dye used to evaluate the bleaching activity of H2O2 in test tubes and stained tooth models. The efficacy of the catalyst, Fe3+-histidine@Al-MSN, on the bleaching reaction of H2O2 with different concentrations (0, 1, 2, 4, 6, 8 and 10%) at different initial pH environments (3, 5, 7, 9 and 11) was evaluated by measuring the final pH value of environment and residual Orange II concentration after reaction. Furthermore, the used catalyst was collected and then reacted with fresh Orange II and H2O2 to investigate the stability of the catalyst. In stained tooth model, the teeth were stained with Orange II (0.15mM) solution for 72 hours, and bleached with 4% or 10% H2O2, which were catalyzed by Fe3+-histidine@Al-MSN at initial pH 7. Image analysis technique with CIE color code analysis was used to analyze the color change of bleached teeth. In test tube model, there was no obvious change of environmental pH during the reaction in the group with initial pH 3. However, the other groups with higher initial pH demonstrated a significant dropdown of environmental pH within 15 minutes after reaction and became plateau latter. The groups reacted at initial pH 3, 5, 7 and 9, in which the final pH values were between 3 and 3.5 after reaction, exhibited more Orange II degradation than the group reacted at initial pH 11, in which the final pH value was 7 and unfavorable for Fenton-like reaction. The efficacy of Fe3+-histidine@Al-MSN catalyst on bleaching reaction increased when the concentration of H2O2 increased from 0% to 4%, but presented similar when the concentration of H2O2 was over 4%. These results indicate that raising H2O2 concentration, up to 4%, may enhance the catalytic effect of Fe3+-histidine@Al-MSN , but no benefit when the concentration of H2O2 was over than 4%, because of the scavenge effect. In addition, when the reused-cycle increased, the efficiency of used catalysts declined gradually, and 4% H2O2 had most benefit for the catalyst with less decline of its catalytic effect. Consistently, with ICP-MS analysis and SEM observes, we found Fe and Al leaching out from the catalyst and aggregation of the used catalyst, which would cause the decline of the efficiency. In stained tooth model, H2O2 solution with Fe3+-histidine@Al-MSN as a catalyst showed noticeable bleaching effect. The group reacted with 4% H2O2 had similar efficiency with 10% H2O2 at initial pH 7. Due to these results, it was concluded that Fe3+-histidine@Al-MSN reacted with 4% H2O2 at initial pH 7 is the best reacting condition for developing in-office power bleaching agent. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:40Z (GMT). No. of bitstreams: 1 ntu-101-R98422018-1.pdf: 2676495 bytes, checksum: e27ee02c1fe0ee72489167085c9df81e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第一章 前言 1
第二章 文獻回顧 3 2.1 牙齒漂白 3 2.1.1牙齒的顏色 3 2.1.2 牙齒變色的原因 4 2.1.3 牙齒變色的治療方式 5 2.1.4 牙齒漂白的機制 7 2.1.5 漂白劑對牙齒的影響 8 2.2 牙齒漂白的催化劑 10 2.2.1 金屬觸媒 10 2.2.2 載體 13 2.2.3 金屬觸媒與載體的連接 17 2.2.4 評估漂白效力的方式 18 第三章 研究目的 21 第四章 材料與方法 22 4.1 實驗儀器 22 4.2 實驗藥品 22 4.3 催化劑的製備 27 4.3.1 Al-MSN的製備 27 4.3.2 Fe3+與Al-MSN的連接 28 4.4催化劑於試管模型上的表現 28 4.4.1催化劑於不同起始反應pH值之催化效力 29 4.4.2催化劑於不同過氧化氫濃度之催化效力 29 4.4.3催化劑重複使用對催化效力之影響 30 4.4.4 催化劑使用後之形態改變 31 4.4.5 催化劑使用後之離子滲漏 31 4.5 催化劑於牙齒染色模型上的表現 34 4.5.1評估牙齒顏色方式的穩定性 34 4.5.2 催化劑於牙齒染色模型上之表現 34 第五章 實驗結果 36 5.1催化劑於試管模型上的表現 36 5.1.1催化劑於不同起始反應pH值之催化效力 36 5.1.2 催化劑於不同過氧化氫濃度之催化效力 36 5.1.3催化劑重複使用對催化效力之影響 38 5.1.4 催化劑使用後之形態改變 38 5.1.5 催化劑使用後之離子滲漏 39 5.2催化劑於牙齒染色模型上的表現 40 5.2.1評估牙齒顏色方式的穩定性 40 5.2.2催化劑於牙齒染色模型上之表現 40 第六章 討論 43 6.1催化劑之設計理念 43 6.2催化劑於試管模型上的表現 45 6.2.1催化劑於不同起始反應pH值之催化效力 45 6.2.2 催化劑於不同過氧化氫濃度之催化效力 47 6.2.3催化劑重複使用對催化效力之影響 48 6.2.4 催化劑中鋁離子滲漏對健康之影響 51 6.3催化劑於牙齒染色模型上的表現 52 第七章 結論 57 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中孔洞二氧化矽奈米分子 | zh_TW |
| dc.subject | 牙齒漂白 | zh_TW |
| dc.subject | pH | zh_TW |
| dc.subject | 過氧化氫濃度 | zh_TW |
| dc.subject | 催化效力 | zh_TW |
| dc.subject | Mesoporous silica nanoparticle | en |
| dc.subject | Tooth bleaching | en |
| dc.subject | pH | en |
| dc.subject | H2O2 concentration | en |
| dc.subject | Catalytic efficiency | en |
| dc.title | 發展中孔洞二氧化矽奈米催化劑在牙齒美白之應用 | zh_TW |
| dc.title | Development of Mesoporous Silica Nanocatalyst for Dental Bleaching Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 牟中原,李伯訓,李佳洪 | |
| dc.subject.keyword | 中孔洞二氧化矽奈米分子,牙齒漂白,pH,過氧化氫濃度,催化效力, | zh_TW |
| dc.subject.keyword | Mesoporous silica nanoparticle,Tooth bleaching,pH,H2O2 concentration,Catalytic efficiency, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-08 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
