Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64755Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | |
| dc.contributor.author | Toniady Tan | en |
| dc.contributor.author | 陳佳慶 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:58:36Z | - |
| dc.date.available | 2012-08-16 | |
| dc.date.copyright | 2012-08-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | Aldaco, R., Irabien, A. and Luis, P. (2005). 'Fluidized bed reactor for fluoride removal.' Chemical Engineering Journal, 107(1–3), 113-117.
Baeyens, J. and Geldart, D. (1974). 'An investigation into slugging fluidized bed.' Chemical Engineering Science, 29, 255-265. Carman, P. C. (1956). Flow of Gases Through Porous Media. London, Butterworths. Clifford, Y. T., Chien, W. C. and Chen, Y. C. (1999). 'Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer.' AIChE Journal, 45(8), 1604-1614. Davis, K. J., Dove, P. M. and De Yoreo, J. J. (2000). 'The Role of Mg2+ as an Impurity in Calcite Growth.' Science, 290(5494), 1134-1137. Fair, G. M. G., J.C. (1954). Water Supply and Waste Water Disposal, with a chapter on chemistry by John Morris. New York, Wiley. Freundlich, H. (1926). Colloid and Capillary Chemistry. London, Metheun, 154. Gibbs, J. W. (1948). Collected Works. New Haven, Yale University Press. Hovmand, S. and J.F., D. (1971). Pilot plant and laboratory scale fluidized reactors at high gas velocities: relevance of slug flow in fluidization. New York, Academic Press, 193-259. Huang, C., Pan, J. R., Lee, M. and Yen, S. (2007). 'Treatment of high level arsenic containing waste water by fluidized bed crystallization process.' Journal of Chemical Technology and Biotechnology, 82, 289-229. Kawamura, S. (1975). 'Design and operation of high rate filters - part2.' Journal of American Water Works Association, 67(11), 653-662. Kitamura, M., Konno, H., Yasui, A. and Masuoka, H. (2002). 'Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions.' Journal of Crystal Growth, 236(1–3), 323-332. Klein, J. P. and David, R. (1995). Crystallization technology handbook. New York, Marcel Dekker. Lee, C. I. and Yang, W. F. (2005). 'Heavy metal removal from aqueous solution in sequential fluidized-bed reactors.' Journal of Environmental Technology, 26(12), 1345-1353. Lee, C. I., Yang, W. F. and Chiou, C. S. (2006). 'Utilization of water clarifier sludge for copper removal in a liquid fluidized-bed reactor.' Journal of Hazardous Materials, 129(1-3), 58-63. Lin, Y.-P. and Singer, P. C. (2009). 'Effect of Mg2+ on the kinetics of calcite crystal growth.' Journal of Crystal Growth, 312(1), 136-140. Mahvi, A. H., Shafiee, F. and Naddafi, K. (2005). 'Feasibility study of crystallization process for water softening in a pellet reactor.' International Journal of Environmental Science and Technology, 1(4), 301-304. McCabe, W. L., Smith, J. C. and Harriot , P. (1993). Unit Operation of Chemical Engineering. International Edition, McGraw-Hill, 882-924. Merian, E., Anke, M., Ihnat, M. and Stoeppler (2004). Element and Their Compounds in the Environment. Weinheim, Wiley-VCH, 77. Mersmann, A. (2001). Fundamentals of crystallization, Crystallization technology handbook. New York, Marcel Dekker. Morel, F. M. and Hering, J. G. (1993). Principles and application of aquatic chemistry. New York, John Wiley & Sons, 160. Mullin, J. W. (2001). Crystallization. Oxford, Butterworth-Heinemann, 109. Myerson, A. S. (1993). Influence of impurities and solvents on crystallization.' Handbook of industrial crystallization'. Brenner, H. Stoneham, MA, Butterworth-Heinemann, 65-87. Nancollas, G. H. and Wu, W. J. (2009). 'Response to comment on 'A New Understanding of the Relationship between Solubility and Particle Size' by Godec, A., Jamnik, J., and Gaderscek, M.' Journal of Solution Chemistry, 38(1), 147-148. Nielsen, A. E. (1984). 'Electrolyte crystal-growth mechanism.' Journal of Crystal Growth, 67(2), 289-310. Nielsen, A. E. and Toft, J. M. (1984). 'Electrolyte crystal-growth kinetic.' Journal of Crystal Growth, 67(2), 278-288. Nyvlt, J. (1978).' Industrial Crystallization. New York, Verlag Chemie 26-31. Nyvlt, J., Sohnel, O., Matuchova, M. and Miroslav, B. (1985). The Kinetic of Industrial Crystallization.' The Kinetic of Industrial Crystallization. New York, Elsevier, 77. Ostwalt, W. (1897). 'Studieren uber die bildung und umwandlung fester korper.' Zeitschrift fur Physilische Chemie, 22, 289-330. Ostwalt, W. (1900). Zeitschrift fur Physilische Chemie, 34, 494. Rosenberger, F. (1986). Journal of Crystal Growth, 76, 618-636. Rovatti, M., Nicolella, C., Converti, A., Ghigliazza, R. and Di Felice, R. (1995). 'Phosphorus removal in fluidized bed biological reactor (FBBR).' Water Research, 29(12), 2627-2634. Sawyer, C. N., McCarty, P. L. and Parkin, G. F. (1994). Chemistry for Environmental Engineer. New York, McGraw-Hill. Tavare, N. S. (1995). Industrial Crystallization Process Simulation, Analysis and Design. New York, Plenum Press, 5-59. Thomson, W. (1871). Proceedings of the Royal Society of Edinburgh, 7, 63. Van den Broeck, K., Van Hoornick, N., Van Hoeymissen, J., de Boer, R., Giesen, A. and Wilms, D. (2003). 'Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor.' Ieee Transactions on Semiconductor Manufacturing, 16(3), 423-428. Wang, X. C., Yuan, H. L., Liu, Y. J. and Jin, P. K. (2007). 'Fluidised pellet bed bioreactor: a promising technology for onsite wastewater treatment and reuse.' Water Science & Technology 55(1-2), 59-67. Wilms, D., Vercaemst, K. and Vandijk, J. C. (1992). 'Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor.' Water Research, 26(2), 235-239. Wilson, L. O. (1978). 'A new look at the Burton, Prim, and Slichter model of segregation during crystalgrowth from the melt.' Journal of Crystal Growth, 44, 371-376. Wu, W. J. and Nancollas, G. H. (1998). 'A new understanding of the relationship between solubility and particle size.' Journal of Solution Chemistry, 27(6), 521-531. Yang, W. C. (2003). Handbook of fluidization and fluid-particle system. New York, Marcel Dekker, 705-706. You, S. H., Tseng, D. H. and Guo, G. L. (2001). 'A case study on the wastewater reclamation and reuse in the semiconductor industry.' Resources Conservation and Recycling, 32(1), 73-81. You, S. H., Tseng, D. H., Guo, G. L. and Yang, J. J. (1999). 'The potential for the recovery and reuse of cooling water in Taiwan.' Resources Conservation and Recycling, 26(1), 53-70. Zhang, Y. and Dawe, R. A. (2000). 'Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology.' Chemical Geology, 163(1–4), 129-138. Zhou, P., Huang, J.-C., Li, A. W. F. and Wei, S. (1999). 'Heavy metal removal from wastewater in fluidized bed reactor.' Water Research, 33(8), 1918-1924. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64755 | - |
| dc.description.abstract | 本研究設計流體化床反應槽處理臺灣半導體之實場逆滲透及冷卻廢水。目的在於減少廢水中硬度,使其可回收再利用。
設置方法是採用石英砂顆粒為流化床反應槽之結晶介質,利用碳酸鈣鈉、氫氧化鈣及氫氧化鈉三種鹼性物質控制pH值,來探討過飽和度之去除作用,再比較向上流速度,進水濃度,氣泡總去除率之影響。採樣之樣品利用離子色譜法測定進出水陰陽離子濃度,而結晶後之沙粒使用掃描電子顯微鏡和XRD進行分析。 研究顯示,最佳去除效率之pH值為9.5∼10.5,鹼度添加以碳酸鈉效果最好, 隨添加劑量增加可達95%。而在氫氧化鈉方面,去除率為60%且水質較為清澈。氫氧化鈣則是僅能去除40%。隨著上升速度增加,混合較均勻,去除效率也越好。在反應器中加入氣泡,反而會使去除效率些微降低。 | zh_TW |
| dc.description.abstract | In this study, a fluidized bed reactor was employed to treat wastewater from reverse osmosis and cooling water system of one semiconductor industry in Taiwan. The main purpose was to reduce calcium content of the water for reuse.
The treatment was done by crystallization in the fluidized bed reactor with quartz sand as the pellet media. The wastewater was supersaturated with calcium at different pH levels. Several chemicals were used to study the effect of nucleation on calcium removal rate. The experimental parameters include upward fluid velocity, dissolved ion concentrations in influent water and size of pebbles. The ionic concentrations of influent water were measured using ion chromatography. The crystals formed on the surface of sand were analyzed using scanning electron microscopy and x-ray diffraction. The optimum pH for effective removal was found to range from 9.5 to 10.5. The choice of chemical to be used to facilitate calcium removal depends on the concentration of carbonate in the waste water. For calcium concentrations and alkalinity used in this study, use of sodium carbonate could remove up to 99% of calcium, but resulted in a very high carbonate alkalinity. Sodium hydroxide could remove up to 60% of calcium and resulted in much clear water. Calcium hydroxide can remove up to 40% of calcium. Increasing the upward velocity resulted in better mixing and better removal. The bubbling into the reactor created a slugging bubble and decreased mixing efficiency in the reactor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:36Z (GMT). No. of bitstreams: 1 ntu-101-R99541138-1.pdf: 7850106 bytes, checksum: b1610dc212c41f7a5b3f088e2e3f5375 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Research Objectives 1 Chapter 2 Literature Review 3 2.1 Background information 3 2.1.1 Source of calcium and regulation 3 2.1.2 Calcium and hardness 4 2.2 Theory of crystallization 6 2.2.1 Crystallization and precipitation 6 2.2.2 Crystallization of calcium carbonate 7 2.2.3 Thermodynamic aspect of crystallization 8 2.2.4 Kinetic theory of nucleation 12 2.3 Fluidized bed reactor 17 2.3.1 Fluidization 17 2.3.2 Crystallization by a fluidized bed reactor and application 22 Chapter 3 Material and Methods 25 3.1 Source of wastewater 25 3.2 Pellet medium 25 3.3 Fluidized bed reactor 28 3.4 Chemicals 31 3.5 Equipment and Instruments 33 3.6 Experimental method 36 Chapter 4 Results and Discussion 41 4.1 Analysis of semiconductor wastewater 41 4.2 Upward velocity in fluidized bed reactor 44 4.3 Crystallization effects on pellet size 50 4.4 Analysis of sand surface using SEM and XRD 52 4.5 Treatment by using batch fluidization bed reactor 58 4.5.1 Using synthetic wastewater 58 4.5.2 Removal at different pH level 60 4.5.3 Removal using sodium hydroxide, sodium bicarbonate and calcium hydroxide 63 4.5.4 Removal by using both sodium hydroxide and sodium carbonate 68 4.5.5 Removal at different concentration of calcium using NaOH 72 4.5.6 Removal of initial Ca2+ of 48 mg/L using Na2CO3 at pH 10.5 75 4.5.7 Magnesium removal at different pH level 77 4.6 Semi continuous system of fluidized bed reactor 78 4.6.1 Removal at different retention time 78 4.6.2 The effect of aeration rate 79 4.6.3 Removal by using Na2CO3 in combination with Ca(OH)2 and NaOH to treat wastewater with 400 mg/L Ca2+ 83 4.6.4 Calcium, magnesium and alkalinity removal in wastewater of 50 mg/L Ca2+ and 12 mg/L Mg2+ 86 Chapter 5 Conclusions and Suggestions 89 5.1 Conclusions 89 5.2 Suggestions 90 REFERENCES 91 | |
| dc.language.iso | en | |
| dc.subject | 流體化床 | zh_TW |
| dc.subject | 去除率 | zh_TW |
| dc.subject | 鈣去除 | zh_TW |
| dc.subject | 過飽和度 | zh_TW |
| dc.subject | fluidized bed reactor | en |
| dc.subject | calcium removal | en |
| dc.subject | removal rate | en |
| dc.subject | supersaturated | en |
| dc.title | 以流體化床去除半導體廠廢水中鈣之研究 | zh_TW |
| dc.title | Removal of Calcium from Semiconductor Wastewater Using a Fluidized Bed Reactor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭繼汾,官文惠,胡景堯 | |
| dc.subject.keyword | 鈣去除,流體化床,去除率,過飽和度, | zh_TW |
| dc.subject.keyword | calcium removal,fluidized bed reactor,removal rate,supersaturated, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| Appears in Collections: | 環境工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 7.67 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
