Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64721
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨
dc.contributor.authorYi-Chen Hsiehen
dc.contributor.author謝怡真zh_TW
dc.date.accessioned2021-06-16T22:58:02Z-
dc.date.available2014-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citationAjuh, P., Kuster, B., Panov, K., Zomerdijk, J. C., Mann, M. and Lamond, A. I. (2000). Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J 19, 6569-81.
Ajuh, P. and Lamond, A. I. (2003). Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Res 31, 6104-16.
Andersson, E. R., Sandberg, R. and Lendahl, U. (2011). Notch signaling: simplicity in design, versatility in function. Development 138, 3593-612.
Baker, N. E. (2000). Notch signaling in the nervous system. Pieces still missing from the puzzle. Bioessays 22, 264-73.
Baker, N. E. and Yu, S. Y. (1997). Proneural function of neurogenic genes in the developing Drosophila eye. Curr Biol 7, 122-32.
Baonza, A. and Garcia-Bellido, A. (2000). Notch signaling directly controls cell proliferation in the Drosophila wing disc. Proc Natl Acad Sci U S A 97, 2609-14.
Blair, S. S. (1995). Compartments and appendage development in Drosophila. Bioessays 17, 299-309.
Blair, S. S. (2007). Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu Rev Cell Dev Biol 23, 293-319.
Blair, S. S., Brower, D. L., Thomas, J. B. and Zavortink, M. (1994). The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development 120, 1805-15.
Bolos, V., Grego-Bessa, J. and de la Pompa, J. L. (2007). Notch signaling in development and cancer. Endocr Rev 28, 339-63.
Boudrez, A., Beullens, M., Groenen, P., Van Eynde, A., Vulsteke, V., Jagiello, I., Murray, M., Krainer, A. R., Stalmans, W. and Bollen, M. (2000). NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J Biol Chem 275, 25411-7.
Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-15.
Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nature Reviews Molecular Cell Biology 7, 678-689.
Chan, S. P. and Cheng, S. C. (2005). The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J Biol Chem 280, 31190-9.
Chan, S. P., Kao, D. I., Tsai, W. Y. and Cheng, S. C. (2003). The Prp19p-associated complex in spliceosome activation. Science 302, 279-82.
Chen, H. R., Jan, S. P., Tsao, T. Y., Sheu, Y. J., Banroques, J. and Cheng, S. C. (1998). Snt309p, a Component of the Prp19p-Associated Complex That Interacts with Prp19p and Associates with the Spliceosome Simultaneously with or Immediately after Dissociation of U4 in the Same Manner as Prp19p. Mol Cell Biol 18, 2196-204.
Couso, J. P., Knust, E. and Martinez Arias, A. (1995). Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr Biol 5, 1437-48.
de Celis, J. F. and Bray, S. (1997). Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124, 3241-51.
de Celis, J. F., Bray, S. and Garcia-Bellido, A. (1997). Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development 124, 1919-28.
de Celis, J. F., Garcia-Bellido, A. and Bray, S. J. (1996). Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359-69.
del Alamo, D., Rouault, H. and Schweisguth, F. (2011). Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21, R40-7.
Diaz-Benjumea, F. J. and Cohen, S. M. (1993). Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75, 741-52.
Dorsett, D. (1993). Distance-independent inactivation of an enhancer by the suppressor of Hairy-wing DNA-binding protein of Drosophila. Genetics 134, 1135-44.
Falix, F. A., Aronson, D. C., Lamers, W. H. and Gaemers, I. C. (2012). Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta 1822, 988-95.
Ferron, S. R., Charalambous, M., Radford, E., McEwen, K., Wildner, H., Hind, E., Morante-Redolat, J. M., Laborda, J., Guillemot, F., Bauer, S. R. et al. (2011). Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475, 381-5.
Fortschegger, K., Wagner, B., Voglauer, R., Katinger, H., Sibilia, M. and Grillari, J. (2007). Early embryonic lethality of mice lacking the essential protein SNEV. Mol Cell Biol 27, 3123-30.
Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C. and Jones, K. A. (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16, 1397-411.
Fryer, C. J., White, J. B. and Jones, K. A. (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16, 509-20.
Garcia, A. and Kandel, J. J. (2012). Notch: a key regulator of tumor angiogenesis and metastasis. Histol Histopathol 27, 151-6.
Gardina, P. J., Clark, T. A., Shimada, B., Staples, M. K., Yang, Q., Veitch, J., Schweitzer, A., Awad, T., Sugnet, C., Dee, S. et al. (2006). Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7, 325.
Gencheva, M., Lin, T. Y., Wu, X., Yang, L., Richard, C., Jones, M., Lin, S. B. and Lin, R. J. (2010). Nuclear retention of unspliced pre-mRNAs by mutant DHX16/hPRP2, a spliceosomal DEAH-box protein. J Biol Chem 285, 35624-32.
Gilbert, S. F. (2010). Developmental biology. Sunderland, Mass.: Sinauer Associates.
Giraldez, A. J. and Cohen, S. M. (2003). Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development 130, 6533-43.
Grillari, J., Ajuh, P., Stadler, G., Loscher, M., Voglauer, R., Ernst, W., Chusainow, J., Eisenhaber, F., Pokar, M., Fortschegger, K. et al. (2005). SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Res 33, 6868-83.
Grote, M., Wolf, E., Will, C. L., Lemm, I., Agafonov, D. E., Schomburg, A., Fischle, W., Urlaub, H. and Luhrmann, R. (2010). Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol 30, 2105-19.
Haenlin, M., Kramatschek, B. and Campos-Ortega, J. A. (1990). The pattern of transcription of the neurogenic gene Delta of Drosophila melanogaster. Development 110, 905-14.
Hay, B. A., Maile, R. and Rubin, G. M. (1997). P element insertion-dependent gene activation in the Drosophila eye. Proc Natl Acad Sci U S A 94, 5195-200.
Huppert, S. S., Jacobsen, T. L. and Muskavitch, M. A. (1997). Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development 124, 3283-91.
Jack, J., Dorsett, D., Delotto, Y. and Liu, S. (1991). Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer. Development 113, 735-47.
Kapur, K., Xing, Y., Ouyang, Z. and Wong, W. H. (2007). Exon arrays provide accurate assessments of gene expression. Genome Biol 8, R82.
Kleinridders, A., Pogoda, H. M., Irlenbusch, S., Smyth, N., Koncz, C., Hammerschmidt, M. and Bruning, J. C. (2009). PLRG1 is an essential regulator of cell proliferation and apoptosis during vertebrate development and tissue homeostasis. Mol Cell Biol 29, 3173-85.
Kooh, P. J., Fehon, R. G. and Muskavitch, M. A. (1993). Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117, 493-507.
Kuo, P. C., Tsao, Y. P., Chang, H. W., Chen, P. H., Huang, C. W., Lin, S. T., Weng, Y. T., Tsai, T. C., Shieh, S. Y. and Chen, S. L. (2009). Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor. Cancer Res 69, 8877-85.
Lecourtois, M. and Schweisguth, F. (1995). The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev 9, 2598-608.
Leong, K. G. and Karsan, A. (2006). Recent insights into the role of Notch signaling in tumorigenesis. Blood 107, 2223-33.
Lindsley, D. L. and Zimm, G. G. (1992). The genome of Drosophila melanogaster. San Diego: Academic Press.
Lopez, A. J. (1998). Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 32, 279-305.
Maass, N., Rosel, F., Schem, C., Hitomi, J., Jonat, W. and Nagasaki, K. (2002). Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer Lett 185, 219-23.
Micchelli, C. A., Rulifson, E. J. and Blair, S. S. (1997). The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124, 1485-95.
Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y. and Li, X. (2009). Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 5, e1000526.
Nagaraj, R. and Banerjee, U. (2007). Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 134, 825-31.
Nagasaki, K., Maass, N., Manabe, T., Hanzawa, H., Tsukada, T., Kikuchi, K. and Yamaguchi, K. (1999). Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer Lett 140, 219-26.
Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A. and Mann, M. (1998). Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 20, 46-50.
Neumann, C. J. and Cohen, S. M. (1996). A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122, 3477-85.
Ohi, M. D. and Gould, K. L. (2002). Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA 8, 798-815.
Palma, K., Zhao, Q., Cheng, Y. T., Bi, D., Monaghan, J., Cheng, W., Zhang, Y. and Li, X. (2007). Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev 21, 1484-93.
Pikielny, C. W. and Rosbash, M. (1985). mRNA splicing efficiency in yeast and the contribution of nonconserved sequences. Cell 41, 119-26.
Pleiss, J. A., Whitworth, G. B., Bergkessel, M. and Guthrie, C. (2007). Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 5, e90.
Qi, C., Zhu, Y. T., Chang, J., Yeldandi, A. V., Rao, M. S. and Zhu, Y. J. (2005). Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun 328, 393-8.
Ranganathan, P., Weaver, K. L. and Capobianco, A. J. (2011). Notch signalling in solid tumours: a little bit of everything but not all the time. Nature Reviews Cancer 11, 338-351.
Roignant, J. Y. and Treisman, J. E. (2009). Pattern formation in the Drosophila eye disc. Int J Dev Biol 53, 795-804.
Rulifson, E. J. and Blair, S. S. (1995). Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813-24.
Shalaby, N. A., Parks, A. L., Morreale, E. J., Osswalt, M. C., Pfau, K. M., Pierce, E. L. and Muskavitch, M. A. (2009). A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182, 1061-76.
Sperling, J., Azubel, M. and Sperling, R. (2008). Structure and function of the Pre-mRNA splicing machine. Structure 16, 1605-15.
Tomlinson, A. and Struhl, G. (2001). Delta/Notch and Boss/Sevenless signals act combinatorially to specify the Drosophila R7 photoreceptor. Mol Cell 7, 487-95.
Tsuda, L., Nagaraj, R., Zipursky, S. L. and Banerjee, U. (2002). An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell 110, 625-37.
Vrailas-Mortimer, A. D., Majumdar, N., Middleton, G., Cooke, E. M. and Marenda, D. R. (2007). Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development. Dev Biol 308, 534-46.
Xu, F., Xu, S., Wiermer, M., Zhang, Y. and Li, X. (2012). The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes. Plant J 70, 916-28.
Zecca, M. and Struhl, G. (2007). Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation. Development 134, 3001-10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64721-
dc.description.abstractBCAS2 (Breast carcinoma amplified sequence 2)是一個核蛋白,也是抑癌蛋白p53的負調控者,過去的研究中發現BCAS2除了透過p53,還可能藉由其他方式調控細胞生長。我們實驗室的研究亦指出BCAS2的確是參與核醣核酸剪切體 hPrp19/CDC5L complex的核心成員之一,並且參與核醣核酸的剪切。我們也發現當果蠅體內BCAS2相似蛋白(dBCAS2)的表現在全身被降低時,會造成果蠅無法發育為成蟲;而利用組織特異性啟動子在果蠅翅膀降低dBCAS2的表現,則會造成翅膀的殘缺,這些證據顯示BCAS2在發育過程中的重要性。另外,在dBCAS2被默化的果蠅翅膀中異位表現人類的BCAS2 (hBCAS2)可以挽救翅膀殘缺的情形,這顯示人類與果蠅的BCAS2扮演相似的角色。
在本篇論文研究中,我們利用組織特異性啟動子engrailed-GAL4表現dBCAS2雙鏈RNA,默化果蠅翅膀中的dBCAS2,尋找受dBCAS2調控的訊息傳遞路徑。透過Delta-Notch訊息傳遞路徑下游基因cut與E(spl)m8表現量的改變,我們發現Delta-Notch訊息傳遞路徑的活性會因為dBCAS2表現量減少而下降。當dBCAS2被默化時,會降低 delta基因在轉譯的過程中核醣核酸剪切的效率,進而導致Delta表現量下降、影響Delta-Notch 訊息的傳遞。在大量表現Delta的果蠅眼睛中將dBCAS2默化,可以挽救Delta在眼睛中過量表現時所產生的異常結果,更加證明dBCAS2會調控Delta的表現。在果蠅體內大量表現hBCAS2或是dBCAS2不會產生任何異常現象,但若在dBCAS2被默化的果蠅翅膀中大量表現hBCAS2或是dBCAS2,都可以挽救Delta-Notch訊息傳遞路徑活性降低時的異常現象。藉由這些研究結果,我們認為dBCAS2可能透過調控Delta-Notch訊息傳遞路徑而參與在果蠅翅膀發育的過程當中。
zh_TW
dc.description.abstractPreviously, we found that breast carcinoma amplified sequence 2 (BCAS2), a nuclear protein and a p53 negative regulator, is involved in cell growth regulations. Then, we proved that BCAS2 is indeed a component of hPrp19/CDC5L complex and functions in pre-mRNA splicing. Ubiquitous silencing of dBCAS2 in the whole body and tissue-specific knockdown of dBCAS2 in the wings result in larval lethality and wing deformity respectively, suggesting the importance of dBCAS2 in fly development. Additionally, ectopic expression of hBCAS2 in dBCAS2-depleted fly can rescue the lethality and wing deformity, indicating that hBCAS2 plays a similar role to dBCAS2. In this study, we found that dBCAS2 regulates the activity of Delta-Notch signaling. Deprivation of dBCAS2 down-regulates the expression of Delta ligand by impeding splicing efficiency of delta, and hence diminishing the transcription of Delta-Notch signaling target genes, such as cut and E(spl)m8. Furthermore, depletion of dBCAS2 and ectopic expression of either hBCAS2 or dBCAS2, which exhibits normal phenotypes, can rescue aberrant Delta-overexpressing retinas and abnormal dBCAS2-depleted wing discs respectively, providing supportive evidence for the regulation of Delta-Notch signaling by dBCAS2. Our results indicate that dBCAS2 participates in the regulation of Delta-Notch signaling in Drosophila wing development.en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:58:02Z (GMT). No. of bitstreams: 1
ntu-101-R99445109-1.pdf: 2590589 bytes, checksum: a1c66b5f0bdeb397cb8c1bcae947c062 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
CHAPTER 1 INTRODUCTION 1
1.1 The basic knowledge of BCAS2 1
1.2 The conservation of BCAS2 across species 2
1.3 The crucial roles of members in Prp19-associated splicing complex in embryonic development 3
1.4 The canonical Delta-Notch signaling pathway 4
1.5 Delta-Notch signaling in Drosophila eye and wing development 5
1.6 Delta-Notch signaling regulates cell differentiation and tissue development. 6
1.7 Specific aims 7
CHAPTER 2 MATERIALS AND METHODS 8
2.1 Fly genetics and fly stocks 8
2.2 Immunostaining 9
2.3 Quantitative RT-PCR analysis 10
2.4 Construction of dBCAS2 transgenic fly 14
2.6 Adult wing images and fluorescent images processing and analysis 18
CHAPTER 3 RESULTS 19
3.1 BCAS2 is evolutionary conserved and is an essential protein in development. 19
3.2 dBCAS2 is involved in the regulation of Delta-Notch signaling. 19
3.3 Depletion of dBCAS2 down-regulates the expression of Delta and Notch. 22
3.4 Silencing of dBCAS2 down-regulates the expression of Delta through the process of pre-mRNA splicing. 23
3.5 Human BCAS2 can rescue the malfunction of Delta-Notch signaling resulted from the deprivation of dBCAS2. 25
3.6 Ectopic expression of hBCAS2 does not alter the expression of Delta and Notch and the activity of Delta-Notch signaling. 26
3.7 Overexpression of dBCAS2 does not affect wing development, the activity of Delta-Notch signaling and the level of Delta and Notch. 26
3.8 3xFLAG-dBCAS2 can restore the effects caused by the deprivation of dBCAS2 27
3.9 Depletion of dBCAS2 can rescue the aberrant eye resulted from overexpression of wild-type Delta. 28
CHAPTER 4 DISCUSSION 31
REFERENCES 38
FIGURES 43
APPENDIX 67
dc.language.isoen
dc.titleBCAS2透過Delta-Notch訊息傳遞調控果蠅翅膀發育zh_TW
dc.titleBCAS2 regulates Drosophila wing development via Delta-Notch signalingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳君泰,詹世鵬,譚婉玉
dc.subject.keywordBCAS2,果蠅,Delta-Notch 訊息傳遞,發育,zh_TW
dc.subject.keywordBCAS2,Drosophila,Delta-Notch signaling,development,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved