請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64703完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔(Si-Chen Lee) | |
| dc.contributor.author | Chih-Wei Yu | en |
| dc.contributor.author | 余致緯 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:57:41Z | - |
| dc.date.available | 2022-08-09 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | [1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature
(London) 391, 667 (1998). [2] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998). [3] Economou, E. N. Surface plasmons in thin flms. Phys. Rev. 182, 539–554 (1969). [4] Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal flms. Phys. Rev B 33, 5186–5201 (1986). [5] Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998). [6] Maier, S. A. et al. Local detection of electromagnetic energy transport below the difraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003). [7] Onuki, T. et al. Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides. J. Microsc. 210, 284–287 (2003). [8] Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev. B 63, 125417 (2001). [9] Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997). [10] Verhagen, E., Polman, A. & Kuipers, L. K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008). [11] Gramotnev, D. K. Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 98, 104302 (2005). [12] Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008). [13] Kurihara, K., Yamamoto, K., Takahara, J. & Otomo, A. Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi separation of variables. J. Phys. A 41, 295401–295500 (2008). [14] Choi, H., Pile, D. F., Nam, S., Bartal, G. & Zhang, X. Compressing surface plasmons for nanoscale optical focusing. Opt. Express 17, 7519–7524 (2009). [15] Volkov, V. S. et al. Nanofocusing with channel plasmon polaritons. Nano Lett. 9,1278–1282 (2009). [16] Jorg, M. et al. Nanomechanical control of an optical antenna. Nature Photonics.2, 230–233 (2008) [17] Jens Dorfmuller, et al. Fabry-Perot Resonances in One-Dimensional Plasmonic Nanostructures. Nano Letter Vol. 9, No. 6, 2372-2377 (2009) [18] Neubrech, F. et al. Resonances of individual metal nanowires in the infrared. Appl. Phys. Lett. 89, 253104 (2006). [19] Allione, M., Temnov, V. V., Fedutik, Y., Woggon, U. & Artemyev, M. V. Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett. 8, 31–35 (2008). [20] Miyazaki, H. T. & Kurokawa, Y. Controlled plasmon resonance in closed metal/insulator/metal nanocavities. Appl. Phys. Lett. 89, 211126 (2006). [21] Sondergaard, T., Beermann, J., Boltasseva, A. & Bozhevolnyi, S. I. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration. Phys. Rev. B 77, 115420 (2008). [22] Hayes, C. L. & Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003). [23] Liao H., Nehl C. L. & Hafner J.H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1, 201–208 (2006). [24] Haes, A. & Van Duyne, R. P. A unifed view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379, 920–930 (2004). [25] Bozhevolnyi, S. I. in Nanophotonics with Surface Plasmons (eds Shalaev, V.M.& Kawata, S.) 1–34 (Elsevier, 2007). [26] Sincerbox, G. T. & Gordon II, J. C. Small fast large-aperture light modulator using attenuated total refection. Appl. Opt. 20, 1491–1494 (1981). [27] Solgaard, O., Ho., F., Tackara, J. I. & Bloom, D. M. High frequency attenuated total internal refection light modulator. Appl. Phys. Lett. 61, 2500–2502 (1992). [28] Dicken, M. J. et al. Electrooptic modulation in thin flm barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008). [29] Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: A metal-oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009). [30] MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009). [31] Pacifci, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007). [32] Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008). [33] Y. T. Wu, Y. T. Chang, H. H. Chen, H. F. Huang, D. C. Tzuang, Y. W. Jiang, P. E. Chang, and S. C. Lee, “Narrow bandwidth mid-infrared waveguide thermal emitters”, IEEE Photonics Technology Lett., 22, 1159 (2010). [34] H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang and S. C. Lee, “Narrow Bandwidth and Highly Polarized Ratio Infrared Thermal Emitter”, Appl. Phys. Lett., 97, 163112 (2010) [35] P. E. Chang, Y. W. Jiang, H. H. Chen, Y. T. Chang, Y. T. Wu, L. Tzuang, Y. H. Ye and S. C. Lee, “Wavelength Selective Plasmonic Thermal Emitter by Polarization Utilizing Fabry-Perot Type Resonances”, Appl. Phys. Lett., accepted (2010/12/21). [36] Optics [37] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry,and T. W. Ebbesen “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays”, Physical Review Letters (2001) [38] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000). [39] J. Gomez Rivas, Nature Photonics 2, 137 (2008). [40] J. Saxler, J. Gomez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, Phys. Rev. B 69, 155427 (2004). [41] T.-I. Jeon and D. Grischkowsky, Appl. Phys. Lett. 88, 061113 (2006). [42]J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, Phys. Rev. B 68, 201306(R) (2003). [43] H. Cao and A. Nahata, Opt. Express 12, 1004 (2004) [44] D. Qu, D. Grischkowsky, and W. Zhang, Opt. Lett. 29, 896 (2004). [45] F. J. G. de Abajo, R. Gomez-Medina, and J. J. Saenz, Phys. Rev. E 72, 016608 (2005). [46] B. Hou, W. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett. 89, 131917 (2006). [47] M.Beruete, M.Sorolla, I.Campillo, J.SDolado, L.Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, Opt. Lett. 29, 2500 (2004). [48] F. Miyamaru, M. Tanaka, and M. Hangyo, Phys. Rev. B 74, 153416 (2006). [49] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Science 305, 847 (2004). [50] A. P. Hibbins, B. R. Evans, and J. R. Sambles, Science 308, 670 (2005). [51] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, Nature Photonics 2, 175 (2008). [52] Y. T. Chang, Y. T. Wu, J. H. Lee, H. H. Chen, C. Y. Hsueh, H. F. Huang, Y. W. Jiang, P. E. Chang and S. C. Lee, “Emission Properties in Ag/SiO2/Ag Plasmonic Thermal Emitter with different lattice type, hole shap and dielectric material”, Appl. Phys. Lett., 95, 213102 (2009). [53] Y.W. Jiang, L.D. Tzuang, M.W. Tsai, Y.H. Ye, Y.T. Wu, C.Y. Chen, S.C. Lee, ”Extraordinary transmission through 2D periodic arrays of rectangular subwavelength holes with different shape”, metamaterials (2008) [54] Jackson, AG; Ohmer, MC; LeClair, SR,” Relationship of the second order nonlinear optical coefficient to energy gap in inorganic non-centrosymmetric crystals”, INFRARED PHYSICS & TECHNOLOGY (1997) [55] F.Brown, R.E. Parks, and A.M. Sleeper, “Nonlinear optical reflection from a metallic boundary”, Phys. Rev. Lett. 14, 1029-1031 (1965) [56] P.A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys, Rev, Lett. 7, 118-119 (1961) [57] H. Raether,”Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Vol. 111 of Springer Tracts in Modern Physics (1988) [58] T.F. Heinz, “Nonlinear Surface Electromagnetic Phenomena”, (1991) [59] Ajay Nahata, Richard A. Linke, T. Ishi and K. Ohashi, Opt. Lett. Vol. 28, No. 6 (2003) [60] M. Airola, Y. Liu, and S. Blair, J. Opt. A: Pure Appl. Opt. 7 (2005) [61] Renlong Zhou, Hua Lu, Xueming Liu, J. Opt. Soc. Am. B (2010) [62] Patrice Genevet, Jean-Philippe Tetienne, Evangelos Gatzogiannis, Romain Blanchard, Mikhail A. Kats, Marlan O. Scully, and Federico Capasso,” Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings” Nano Letter (2010) [63] Renlong Zhou, Hua Lu, Xueming Liu, Yongkang Gong, and Dong Mao, “Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes,” J. Opt. Soc. Am. B (2005) [64] Nieuwstadt van, J.A.H. and Sandtke, M. and Harmsen, R.H. and Segerink, F.B. and Prangsma, J.C. and Enoch, S. andKuipers, L. ,”Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays” .Physical Review Letters, 97 (14). p. 146102 (2006) [65] MAirola, Y Liu and S Blair,” Second-harmonic generation from an array of sub-wavelength metal apertures”, JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS (2005) [66] Surbhi Lal, Stephan Link and Naomi J. Halas , Nature Photonics 1, 641-648 (2007) [67] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi Nature Photonics 4, 83-91 (2010) [68] Hao-Fu Huang,”The Extraordinary Transmission through Periodic U- and H-shaped Hole Arrays.” (2010) [69] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957). [70] David K. Cheng, Field and Waves Electromagnetics, 2nd, Addison-Wesley (1989) [71] Stefan A. Maier, Plasmonics: Fundamentals and Applications, Speinger (2007) [72] Ashcroft/Mermin, Solid State Physics, Thomson (1976) [73] M. A. Ordal, Robert J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, Applied Optics 24, 4493-4499 (1985) [74] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Applied Optics 22, 1099-1120 (1983) [75] K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L.Kuipers,' Phys. Rev. Lett. 92,183901 (2006). [76] Yu-Wei Jiang, Lawrence D. Tzuang, Yi-Han Ye, Yi-Ting Wu, Ming-Wei Tsai, Chia-Yi Chen, and Si-Chen Lee ,Optics Express, Vol. 17, Issue 4, pp. 2631-2637 (2009) [77] Fumiaki Miyamaru, Mitsuo Wada Takeda, PHYSICAL REVIEW B 79, 153405 (2009) [78] Yu-Ming Wu, Le-Wei Li, Bo Liu, IEEE Microwave Conference (2009) [79] T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr,and U. C. Fischer, Nano Letters 11, 1009–1013, 2011 [80] Hongcang Guo, Todd P. Meyrath, Thomas Zentgraf, Na Liu, Liwei Fu, Heinz Schweizer, and Harald Giessen, OPTICS EXPRESS Vol. 16, No. 11 (2008) [81] R. W. Wood, Phys. Rev. 48, 928 (1935) [82] Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu and S. C. Lee, 2008 “Coupling of surface plasmons in a Ag/SiO2/Ag plasmonic thermal emitter with grating on top Ag ”, Appl. Phys. Lett., 93, 263106 [83] Abdelnasser A. Eldek, Atef Z. Elsherbeni, Charles E. Smith, Microwave and optical technology Letters, Vol. 43, No. 2 (2004) [84] Jing Yang, Jiasen Zhang, Xiaofei Wu and Qihuang Gong, Optics Express 16852, Vol. 15, No. 25 (2007) [85] Arvind Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck,, W. E. Moerner, Physical Review B 72, 165409 (2005) [86] Shao-Yu Huang, Hui-Hsin Hsiao, Yi-Tsung Chang, Hung-Hsin Chen, Yu-Wei Jiang, Hao-Fu Huang,Pei-En Chang,1 Hung-Chun Chang, and Si-Chen Lee1, APPLIED PHYSICS LETTERS 98, 1 (2011) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64703 | - |
| dc.description.abstract | 本文在實驗及模擬上透過不同型態的孔洞,研究高階模態的異常穿透及相關特性。透過週期性非對稱型結構以及類蝴蝶結型結構兩種不同方式,量測位於週期排列的金屬孔洞上之表面電漿子的異常穿透圖,且經由模擬數據分析來驗證實驗結果。於非對稱型結構中,週期性孔洞穿透與喇叭型孔洞共振腔長度有關,透過週期改變,共震波峰將會與Wood’s anomaly互相影響。若將此結構坐在反射結構上,雙波侷域性孔洞型震盪模態會於短波長及長波長位置產生。於類蝴蝶型孔洞結構中,實驗透過改變雙孔洞結構、改變單一孔洞結構,增加垂直方向蝴蝶型來產生高階模態的增益。藉由改變孔洞形狀,在中紅外線穿透上量測到更高階模態的穿透增益不侷限在二階模態,於更高階模態上,仍然有相對較強的穿透增益。 | zh_TW |
| dc.description.abstract | The thesis discussed the higher order modes enhancement on non-centrosymmetric, double apertures and bowtie-like hole array by experimental and simulation results. Considering the extraordinary transmission on these two types hole array, higher order modes were measured and calculated directly.
In non-centrosymmetric hole array, trumpet shape hole array was investigated in the relation between main peaks and length of X. By varying the periodic parameter Px, the interaction between Wood’s anomaly and LSRs were shown clearly. Also, double LSRs are shown in MIM structure in shorter and longer wavelength. Double apertures sample perforated with Ag film were investigated. Besides the strong enhancement in bowtie structure [86], the experiment provide a novel way to stimulate higher order modes enhancement in different geometric figures such as double circles and double pentagons. Within double apertures structure such as circles and square, experiment results show the strong enhancement on (3,0) and (4,0) Ag/Si mode. Bowtie-like samples also provide higher order mode transmission. By replacing one of the bowtie triangles with circle, square, and rotation triangle, experiments show that the second order mode still being stimulated highly than fundamental mode. Also, double bowtie samples in orthogonal direction were investigated. Experiment results show that (2,2) Ag/Si mode stimulated more than fundamental mode and the (2,0) Ag/Si mode. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:57:41Z (GMT). No. of bitstreams: 1 ntu-101-R98943064-1.pdf: 8325204 bytes, checksum: d050e0c6f313f738565f5e65b45a5f31 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1 Introduction........................................................................................1
Chapter 2 The Fundamentals of Surface Plasmon...........................................8 2.1 The fundamentals of surface plasmon polaritons...........................................8 2.1.1 Surface plasmon polaritons at a single smooth interface .................................8 2.1.2 Excitation of surface plasmon polaritons…..…………...…..….....................18 2.2 Fabrication Process….....................................................................................21 2.3 Measurement systems………………………….…...................................….23 Chapter 3 Extraordinary transmission through a Silver Film Perforated with Trumpet-Shaped Holes Array..................................................27 3.1 Basic Principle for the Fabry-Perot type LSR......................................................................28 3.2Experiment.............................................................................................................................30 3.3 Extraordinary Transmission of the Trmpet-Shaped Hole Arrays on Ag/Si Structure..........34 3.4 Reflection Spectra of The Trumpet-Shaped Holes Array on Ag/SiO2/Ag Structure...........45 3.5 The Results and Discussion on Trumpet-Shaped holes array on Ag/SiO2/Ag Structure….56 Chapter 4 Extraordinary Transmission through a Silver Film Perforated with Double-Apertures Array in Mid-Infrared Region…............57 4.1 Experiments...................................................................... ..................................................58 4.2 Transmission Spectra of Double-Apertures Ag/Si Structure...............................................63 4.3 Transmission and Dispersion Relation of Double-Apertures under Polarized Light..........67 4.4 Extraordinary Transmission and Dispersion Relation of Double-Pentagons in Ag/Si Structure.....................................................................................................................................70 4.5 Metal Thickness Effect on the Transmission Spectra of Double-Aperture Ag/Si Structure.....................................................................................................................................72 Chapter 5 Extraordinary Transmission through a Silver Film Perforated with Double Bowtie and Bowtie-Like Apertures Array ................77 5.1 Experiments..........................................................................................................................77 5.2 Transmission Spectra of Ag/Si Structure with Silver Film Perforated by Bowtie and Bowtie-Like Periodic Array.......................................................................................................84 5.3 Transmission Spectra in Ag/Si Structure with Double Bowtie Hole Array.........................86 5.4 Transmission Spectra of Ag/Si Structure Perforated by Bowtie-Like Hole Array..............88 Chapter 6 Conclusions.......................................................................................92 Bibliography.......................................................................................................95 | |
| dc.language.iso | en | |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 非對稱孔洞 | zh_TW |
| dc.subject | 高階模態 | zh_TW |
| dc.subject | Non-Centrosymmetric | en |
| dc.subject | Surface Plasmon | en |
| dc.subject | Higher Order Mode | en |
| dc.title | 高階模態異常穿透特性於週期性非對稱型結構及類蝴蝶結型結構於金屬/矽及金屬/介電質/金屬結構之孔洞陣列 | zh_TW |
| dc.title | The Characteristics of Higher Order Modes Analysis on Non-Centrosymmetric Geometric Shape and Bowtie-Like
with Both Ag/Si or Metal/Insulator/Metal Tri-layer Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡明偉(Ming-Wei Tsai),林浩雄(hhlin@ntu.edu.tw) | |
| dc.subject.keyword | 表面電漿,高階模態,非對稱孔洞, | zh_TW |
| dc.subject.keyword | Surface Plasmon, Higher Order Mode, Non-Centrosymmetric, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 8.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
