Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃彥婷(Yen-Ting Hwang)
dc.contributor.authorYueh-Chi Linen
dc.contributor.author林悅祺zh_TW
dc.date.accessioned2021-06-16T22:57:22Z-
dc.date.available2030-12-31
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-26
dc.identifier.citationBellomo, K., A. Clement, T. Mauritsen, G. Rädel, and B. Stevens, 2014: Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. Journal of Climate, 27, 5119-5131.
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Monthly weather review, 97, 163-172.
Bratcher, A. J., and B. S. J. G. R. L. Giese, 2002: Tropical Pacific decadal variability and global warming, 29, 24-21-24-24.
Capotondi, A., and M. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. Journal of physical oceanography, 31, 3496-3515.
Capotondi, A., M. A. Alexander, and C. Deser, 2003: Why are there Rossby wave maxima in the Pacific at 10° S and 13° N? Journal of Physical Oceanography, 33, 1549-1563.
Clement, A. C., and L. C. Peterson, 2008: Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46.
Dijkstra, H. A., and J. D. Neelin, 1995: Ocean-atmosphere interaction and the tropical climatology. Part II: Why the Pacific cold tongue is in the east. Journal of Climate, 8, 1343-1359.
Giese, B. S., S. C. Urizar, and N. S. J. G. r. l. Fučkar, 2002: Southern Hemisphere origins of the 1976 climate shift, 29, 1-1-1-4.
Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805-807.
Hawcroft, M., J. M. Haywood, M. Collins, and A. Jones, 2018: The contrasting climate response to tropical and extratropical energy perturbations. Climate dynamics, 51, 3231-3249.
Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dynamics, 48, 2279-2295.
Hsiao, W.-T., 2018: The Formation of the Spatial Patterns of Tropical Climate Responses to Idealized Extratropical Thermal Forcings. Dept. of Atmospheric Sciences, National Taiwan University, 1-73.
Hurrell, J. W., and Coauthors, 2013: The community earth system model: a framework for collaborative research. Bulletin of the American Meteorological Society, 94, 1339-1360.
Hwang, Y. T., S. P. Xie, C. Deser, and S. M. Kang, 2017: Connecting tropical climate change with Southern Ocean heat uptake. Geophysical Research Letters, 44, 9449-9457.
Jia, F., and L. Wu, 2013: A study of response of the equatorial Pacific SST to doubled-CO2 forcing in the coupled CAM–1.5-layer reduced-gravity ocean model. Journal of physical oceanography, 43, 1288-1300.
Kang, S. M., I. M. Held, D. M. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. Journal of Climate, 21, 3521-3532.
Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate, 29, 4617-4636.
Klein, S. A., and D. L. J. J. o. C. Hartmann, 1993: The seasonal cycle of low stratiform clouds, 6, 1587-1606.
Li, C., L. Wu, and S.-P. Xie, 2013: Impacts of interhemispheric asymmetric thermal forcing on tropical Pacific climate: Surface air–sea coupling and subduction. Journal of Climate, 26, 575-582.
Liu, Z., and S. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. Journal of the atmospheric sciences, 51, 3807-3822.
Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Reviews of Geophysics, 45.
Luo, J. J., and T. Yamagata, 2001: Long‐term El Niño‐Southern Oscillation (ENSO)‐like variation with special emphasis on the South Pacific. Journal of Geophysical Research: Oceans, 106, 22211-22227.
Luo, J. J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO‐like variation as simulated by a coupled GCM. Geophysical research letters, 30.
Ma, H., and L. J. J. o. C. Wu, 2011: Global teleconnections in response to freshening over the Antarctic Ocean, 24, 1071-1088.
McCreary Jr, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. Journal of Physical Oceanography, 24, 466-497.
Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Röhl, 2000: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290, 1947-1951.
Picaut, J., F. Masia, and Y. Du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663-666.
Shine, K. P., and A. Sinha, 1991: Sensitivity of the Earth's climate to height-dependent changes in the water vapour mixing ratio. Nature, 354, 382.
Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. Journal of Climate, 29, 6841-6859.
Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid‐latitudes. Geophysical research letters, 28, 3923-3926.
——, 2003: The seasonal footprinting mechanism in the CSIRO general circulation models. Journal of climate, 16, 2653-2667.
Wang, K., C. Deser, L. Sun, and R. A. Tomas, 2018: Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics. Geophysical Research Letters, 45, 4264-4272.
Wang, Y.-J., H. Cheng, R. L. Edwards, Z. An, J. Wu, C.-C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. science, 294, 2345-2348.
Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. Journal of climate, 19, 6425-6432.
Wu, L., Z. Liu, C. Li, and Y. Sun, 2007: Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection. Climate dynamics, 28, 99-112.
Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23, 966-986.
Xie, S. P., and S. G. H. Philander, 1994: A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46, 340-350.
Yu, S., and M. S. Pritchard, 2019: A Strong Role for the AMOC in Partitioning Global Energy Transport and Shifting ITCZ Position in Response to Latitudinally Discrete Solar Forcing in CESM1. 2. Journal of Climate, 32, 2207-2226.
Zhang, H., C. Deser, A. Clement, and R. Tomas, 2014: Equatorial signatures of the Pacific Meridional Modes: Dependence on mean climate state. Geophysical Research Letters, 41, 568-574.
Zhang, L., and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. Journal of Climate, 27, 8413-8421.
Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853-1860.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64683-
dc.description.abstract古氣候證據和模式研究指出:中高緯地區的氣候變化對熱帶氣候有所影響。為瞭解中高緯的輻射改變影響熱帶太平洋氣候的機制,以及海洋動力在其中的角色,本研究使用海氣耦合的全球氣候模式,分別在南、北半球中高緯地區放入擾動太陽輻射,進而製造半球間熱力不對稱的情境,以分析氣候系統隨時間的反應。
實驗的頭十年,海表溫度呈現了明顯的半球間不對稱結構。首先輻射改變引起的中高緯海表溫度變化,會藉由風-蒸發-海表溫度反饋機制(wind-evaporation-SST feedback),沿著副熱帶太平洋的盛行風向往赤道延伸,進而改變副熱帶東西向海表溫度梯度。
與之相比,第二十至三十年,海表溫度仍能觀察到半球間的不對稱,但不同的是,在赤道冷舌區相比前期有明顯變冷或變暖,本研究認為其生成涉及大氣和海洋的動力機制如下:以北半球中高緯加冷實驗為例,在跨赤道哈德里環流的結構下,伴隨的底層風場往較暖的南半球吹,在南太平洋形成西北風距平,擾動赤道南邊的斜溫層,改變海水熱含量。風場擾動斜溫層有兩種可能的機制:1) 熱帶東風減弱將使斜溫層的東西梯度減緩,使南太平洋西側的斜溫層變淺。2) 西北風距平藉由艾克曼抽吸(Ekman suction)造成向上運動,抬升斜溫層。由此,在原斜溫層附近的海水會變冷,接著藉由平均海流往赤道移動,最終赤道冷舌區的海表溫度變冷,同時也激發熱帶的正反饋加強海溫反應。
zh_TW
dc.description.abstractPaleoclimatic evidence and modeling studies suggest that extratropical climate changes have an influence on the tropical climate. This study aims to investigate the responses of the tropical Pacific climate to extratropical radiative forcings, with a particular focus on the role of ocean dynamics. We perturb the insolation over either the NH or SH extratropics to create an interhemispheric thermal contrast in a global coupled general circulation model.
In the first decade, the sea surface temperature (SST) response shows a significant interhemispheric contrast. Responding to the change of interhemispheric temperature gradient, the extratropical SST anomalies propagate to the subtropical Pacific along the Eastern Pacific which can be explained by the wind-evaporation-SST (WES) footprinting mechanism, resulting in an east-west SST contrast in the subtropics.
In contrast, the slow SST response shows that the interhemispheric contrast still exists, but the enhanced equatorial response (EER), more significant warming or cooling over the equatorial cold tongue region, develops in the 2nd to the 3rd decade after imposing extratropical radiative forcings. We proposed a coupled atmospheric and oceanic dynamical mechanism for the EER formation. Take the NH subpolar radiative cooling case as an example. In the southern tropical Pacific, the anomalous northerly surface wind associated with the cross-equatorial Hadley circulation in the fast response perturbs the depth of the thermocline, resulting in the anomalous cooling near the thermocline in the Western Central Pacific. Here are two possible ways to perturb the thermocline. 1) Weakened tropical easterly winds in the Southern Pacific flattens the thermocline with shallower in the Western Central Pacific. 2) The anomalous surface winds induce the Ekman suction, which raises the local oceanic thermocline. In turn, the anomalous cooling propagates north and east toward equatorial Eastern Pacific by the mean advection process. Then, after the EER response forms, there are some tropical feedbacks to enhance the slow EER response.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:22Z (GMT). No. of bitstreams: 1
ntu-109-R06229003-1.pdf: 21845578 bytes, checksum: 6acfc75d89fb4d90f428925667f281c8 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 4
2.1 Model and Experimental Design 4
2.2 Oceanic Mixed Layer Energy Budget Analysis 5
Chapter 3 Results: SST and Precipitation Responses 9
3.1 SST and Precipitation Response in the FOM 9
3.1.1 Fast response 9
3.1.2 Slow response 10
3.2 Responses in the Slab-ocean Model 11
Chapter 4 Energetics analysis 13
4.1 The Role of Air-sea Fluxes 13
4.1.1 The First Period 13
4.1.2 The Latter Period 15
4.2 The Role of Ocean 16
Chapter 5 Processes of the Slow EER Development 18
5.1 The Formation Mechanisms of the Slow Response 18
5.1.1 Atmospheric Process: Cross-equatorial Surface Wind is Induced 18
5.1.2 Oceanic-atmospheric Process: Two Ways to Perturb the Local Thermocline by the Cross-equatorial Surface Wind 19
5.1.3 Oceanic process: Subsurface Cooling/heating Propagates toward the Eastern Pacific 21
5.2 The Enhanced Mechanisms of the Slow Response 23
5.2.1 The Surface Zonal Advective Feedback 23
5.2.2 The Water Vapor Feedback 24
5.2.3 The Wind Evaporation SST Feedback 24
Chapter 6 Summary and Discussion 26
6.1 Difference between the SH and the NH Forced Cases 27
6.2 Mechanisms of Extratropical-to-tropical Teleconnection 27
6.2.1 The Mean Advection Process 27
6.2.2 Oceanic Rossby wave 28
6.3 Caveats and Outlook 28
REFERENCE 30
FIGURES 35
TABLES 59
dc.language.isoen
dc.title在海氣耦合模式下探討熱帶太平洋氣候對中高緯度強迫之快慢反應zh_TW
dc.titleThe fast and slow components of the tropical Pacific climate response to extratropical forcings in a fully coupled modelen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee曾于恒(Yu-Heng Tseng),隋中興(Chung-Hsiung Sui),羅敏輝(Min-Hui Lo)
dc.subject.keyword遙相關,海氣交互作用,溫帶-熱帶遙相關,海表溫度,zh_TW
dc.subject.keywordteleconnection,air-sea interaction,extratropics-to-tropics teleconnection,sea surface temperature (SST),en
dc.relation.page69
dc.identifier.doi10.6342/NTU202000563
dc.rights.note有償授權
dc.date.accepted2020-02-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
21.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved