Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64681
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor樓國隆
dc.contributor.authorYi-Jang Chenen
dc.contributor.author陳奕璋zh_TW
dc.date.accessioned2021-06-16T22:57:21Z-
dc.date.available2012-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citation1. Ferrara, N. (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21, 687-690
2. Otrock, Z. K., Makarem, J. A., and Shamseddine, A. I. (2007) Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis 38, 258-268
3. Breen, E. C. (2007) VEGF in biological control. J Cell Biochem 102, 1358-1367
4. Cebe-Suarez, S., Zehnder-Fjallman, A., and Ballmer-Hofer, K. (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 63, 601-615
5. Shibuya, M., and Claesson-Welsh, L. (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312, 549-560
6. Koch, S., Tugues, S., Li, X., Gualandi, L., and Claesson-Welsh, L. (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437, 169-183
7. Fuh, G., Li, B., Crowley, C., Cunningham, B., and Wells, J. A. (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273, 11197-11204
8. Lofts, F. J., Hurst, H. C., Sternberg, M. J., and Gullick, W. J. (1993) Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene 8, 2813-2820
9. Gille, H., Kowalski, J., Yu, L., Chen, H., Pisabarro, M. T., Davis-Smyth, T., and Ferrara, N. (2000) A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3'-kinase activation and endothelial cell migration. EMBO J 19, 4064-4073
10. Tanaka, K., Yamaguchi, S., Sawano, A., and Shibuya, M. (1997) Characterization of the extracellular domain in vascular endothelial growth factor receptor-1 (Flt-1 tyrosine kinase). Jpn J Cancer Res 88, 867-876
11. Peters, K. G., De Vries, C., and Williams, L. T. (1993) Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci U S A 90, 8915-8919
12. Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A., and Ferrara, N. (1992) Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J Clin Invest 89, 244-253
13. Schwartz, J. D., Rowinsky, E. K., Youssoufian, H., Pytowski, B., and Wu, Y. (2010) Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 116, 1027-1032
14. Nomura, M., Yamagishi, S., Harada, S., Hayashi, Y., Yamashima, T., Yamashita, J., and Yamamoto, H. (1995) Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 270, 28316-28324
15. Hiratsuka, S., Maru, Y., Okada, A., Seiki, M., Noda, T., and Shibuya, M. (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61, 1207-1213
16. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J. M., Senior, R. M., and Shibuya, M. (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289-300
17. Kami, J., Muranaka, K., Yanagi, Y., Obata, R., Tamaki, Y., and Shibuya, M. (2008) Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase. Jpn J Ophthalmol 52, 91-98
18. McColl, B. K., Baldwin, M. E., Roufail, S., Freeman, C., Moritz, R. L., Simpson, R. J., Alitalo, K., Stacker, S. A., and Achen, M. G. (2003) Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med 198, 863-868
19. Leppanen, V. M., Prota, A. E., Jeltsch, M., Anisimov, A., Kalkkinen, N., Strandin, T., Lankinen, H., Goldman, A., Ballmer-Hofer, K., and Alitalo, K. (2010) Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci U S A 107, 2425-2430
20. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., Risau, W., and Ullrich, A. (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835-846
21. Oelrichs, R. B., Reid, H. H., Bernard, O., Ziemiecki, A., and Wilks, A. F. (1993) NYK/FLK-1: a putative receptor protein tyrosine kinase isolated from E10 embryonic neuroepithelium is expressed in endothelial cells of the developing embryo. Oncogene 8, 11-18
22. Youssoufian, H., Hicklin, D. J., and Rowinsky, E. K. (2007) Review: monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin Cancer Res 13, 5544s-5548s
23. Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J. H., Wernstedt, C., Wu, J., Bruheim, S., Mugishima, H., Mukhopadhyay, D., Spurkland, A., and Claesson-Welsh, L. (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24, 2342-2353
24. Takahashi, T., Yamaguchi, S., Chida, K., and Shibuya, M. (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20, 2768-2778
25. Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., Saksela, O., Kalkkinen, N., and Alitalo, K. (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16, 3898-3911
26. Stacker, S. A., Stenvers, K., Caesar, C., Vitali, A., Domagala, T., Nice, E., Roufail, S., Simpson, R. J., Moritz, R., Karpanen, T., Alitalo, K., and Achen, M. G. (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274, 32127-32136
27. Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E. C., Wise, L., Mercer, A., Kowalski, H., Kerjaschki, D., Stacker, S. A., Achen, M. G., and Alitalo, K. (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20, 4762-4773
28. Jeltsch, M., Karpanen, T., Strandin, T., Aho, K., Lankinen, H., and Alitalo, K. (2006) Vascular endothelial growth factor (VEGF)/VEGF-C mosaic molecules reveal specificity determinants and feature novel receptor binding patterns. J Biol Chem 281, 12187-12195
29. Ghalamkarpour, A., Morlot, S., Raas-Rothschild, A., Utkus, A., Mulliken, J. B., Boon, L. M., and Vikkula, M. (2006) Hereditary lymphedema type I associated with VEGFR3 mutation: the first de novo case and atypical presentations. Clin Genet 70, 330-335
30. Carmeliet, P., De Smet, F., Loges, S., and Mazzone, M. (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6, 315-326
31. Leppanen, V. M., Jeltsch, M., Anisimov, A., Tvorogov, D., Aho, K., Kalkkinen, N., Toivanen, P., Yla-Herttuala, S., Ballmer-Hofer, K., and Alitalo, K. (2011) Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood 117, 1507-1515
32. Anisimov, A., Alitalo, A., Korpisalo, P., Soronen, J., Kaijalainen, S., Leppanen, V. M., Jeltsch, M., Yla-Herttuala, S., and Alitalo, K. (2009) Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 104, 1302-1312
33. Yuzawa, S., Opatowsky, Y., Zhang, Z., Mandiyan, V., Lax, I., and Schlessinger, J. (2007) Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 130, 323-334
34. Yang, Y., Xie, P., Opatowsky, Y., and Schlessinger, J. (2010) Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc Natl Acad Sci U S A 107, 1906-1911
35. Putnam, C. D., Hammel, M., Hura, G. L., and Tainer, J. A. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40, 191-285
36. Mertens, H. D., and Svergun, D. I. (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172, 128-141
37. Siegfried, G., Basak, A., Cromlish, J. A., Benjannet, S., Marcinkiewicz, J., Chretien, M., Seidah, N. G., and Khatib, A. M. (2003) The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 111, 1723-1732
38. Dey, A., Norrbom, C., Zhu, X., Stein, J., Zhang, C., Ueda, K., and Steiner, D. F. (2004) Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology 145, 1961-1971
39. Kisko, K., Brozzo, M. S., Missimer, J., Schleier, T., Menzel, A., Leppanen, V. M., Alitalo, K., Walzthoeni, T., Aebersold, R., and Ballmer-Hofer, K. (2011) Structural analysis of vascular endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. FASEB J 25, 2980-2986
40. Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., Klagsbrun, M., Levi, B. Z., and Neufeld, G. (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. The Journal of biological chemistry 271, 5519-5523
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64681-
dc.description.abstract血管內皮生長因子(vascular endothelial growth factors,VEGFs)可調控血管及淋巴管的形成和恆定,當血管內皮生長因子與受體結合時,會促使受體雙偶化(dimerization),活化細胞內受體酪胺酸激酶(tyrosine kinase)進行自體磷酸化,激發下游訊息分子磷酸化連鎖反應(phosphorylation cascade)。在哺乳動物體中的血管內皮生長因子共有五型:VEGF-A、B、C、D 和 P1GF,其受體有 VEGFR-1 (Flt1)、VEGFR-2(KDR/Flk1)和 VEGFR-3 (Flt4)三類,屬於第五型受體酪胺酸激酶(type V receptor tyrosine kinase, RTK5),其特色為細胞膜外含有有七個免疫球蛋白樣區域(immunoglobulin-like domains, Ig)。VEGF-C、-D 由內皮細胞分泌,主要可與 VEGF-3 結合,以調控淋巴管的新生和增生;當與 VEGFR-2 表現細胞作用時亦可調節血管新生與生成。近期研究發現 VEGF-C、-D 及 VEGFR-3 與腫瘤細胞的生長轉移息息相關。
本研究利用果蠅細胞表現系統表現多種內皮生長因子及其受體或突變型受體進行分析,含:VEGF-C、VEGF-D、VEGFR-3 細胞膜外含首三個和全七個 Ig 區域(VEGFR-3-D1~3、-D1~7)及三種突變型 mtVEGFR-3-D1~7:C1、C3、C1C3(與 VEGF-C 結合之可能重要胺基酸鏈更換為第一型所擁有之胺基酸鏈),探討血管內皮生長因子與受體之結合作用與結構研究。我們研究之初期並無任何 VEGF-C、-D 或 VEGFR-3 之結構研究報告,但最近 VEGF-C 和 VEGFR-2-D2 ~3 所形成之複合物及 VEGF-D 的晶體結構陸續被發表,目前為止VEGFR- 3 尚未有任何結構資訊的文獻報告。有鑑於此,我們以小角度X光散射(small-angle X-ray scattering, SAXS)來對 VEGFR-3 結構及與其複合體之結構進行分析,此方法以均質狀態(mono-disperse)之蛋白質溶液的分子結構為觀察目標,一般相信更能反應出蛋白之天然構型(native conformation),並利用酵素免疫分析法找出第三型受體與因子結合之重要胺基酸。
重組蛋白經由果蠅細胞表現後分泌至培養液,經濃縮、透析、親和層析及膠體層析後可得到高純度蛋白液,本實驗中可取得之各型受體皆高於10毫克/升培養液,另VEGF-C、-D 產量則約2~3毫克/升培養液。在小角度X光散射實驗中,我們利用 ATSAS 程式分析 VEGFR-3- D1~3、VEGFR-3-D1~7、VEGFR-3-D1~3/VEGF-C 三種蛋白分子數據,利用 DAMMIF 及 Situs 重建蛋白表面構造(ab-initio envelope)。依據 VEGFR-2 和/或 cKit 的晶體結構進行同源模擬,這些模擬與小角度X光散射實驗所得之表面構造進行比較,並且反計算出同源模擬之小角度X光散射曲線後與實際實驗數值比較,結果顯示同源模型與重建之表面構造符合。
酵素免疫分析結果顯示 VEGFR-3 和 VEGF-C 的結合力遠低於 VEGFR-1 和 VEGF-A 之結合力,這或許可說明之前複合物難以形成的原因;另外我們參考文獻,將 VEGFR-3 可能與 VEGF-C(或VEGF-A)結合的兩段區域置換為 VEGFR-1 序列,發現這樣的雜合受體(chimeric receptor)可增強其與 VEGF-A 的結合能力,而與 VEGF-C 之結合能力並未改變。根據上述結果我們擬設計同時可結合 VEGF-A 與 VEGF-C 之誘餌受體(decoy receptor),做為癌症治療之研究,並藉由酵素免疫分析來找出 VEGFR-3 與 VEGF-C 最佳結合條件,以利其複合物形成,做為未來結構研究所需,並進一步探討其晶體結構,直觀分析出第三型內皮生長因子受體重要的結構。
zh_TW
dc.description.abstractVascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis. The binding of VEGFs with their cognate receptors (VEGF receptors, VEGFRs) will induce the ligand-mediated receptor dimerization which will activate intracellular tyrosine kinase of receptors undergoing auto-phosphorylation and propagate signal-transduction cascade. In mammalians, there are five members of VEGFs (VEGF-A, B, C, D and PlGF) and three members of VEGFRs (VEGFR-1, Flt1; VEGFR-2, KDR/Flk1; and VEGFR-3, Flt4). VEGFRs belong to type V receptor tyrosine kinases which are characterized with seven immunoglobulin-like domains in their extraceullar domains. VEGF-C and VEGF-D were secreted by endothelial cells and can regulate lymphagiogenesis via binding with VEGFR-3, or regulate angiogenesis and vasculogenesis via binding with VEGFR-2. Recently studies found that VEGF-C, -D and VEGFR-3 are related with tumor growth and metastasis.
In this study, recombinant proteins of VEGF-C, VEGF-D, the first three Ig-like domains of VEGFR-3 (VEGFR-3-D3), whole extracellular domain (VEGF-R3- D7) and three types mutant of whole extracellular domain were expressed by Drosophila Schneider 2 (S2) cell expression system for structural studies of ligands, receptors and ligand/receptor complex. When we started this project, no any structural information of VEGF-C, VEGF-D, or VEGFR-3 is available. However, recently the crystal structures of VEGF-C in complex with VEGFR-2-D2~D3 and VEGF-D have been published, but still no structural information of VEGFR-3 yet. For this thesis, we conducted small-angle X-ray scattering (SAXS) to investigate the structure of VEGFR-3 and its complex with VEGF-C or -D. By this method, protein structure of mono-disperse in solution is the observation target which believe can represent as the native conformation of proteins. We also tried to find the amino acids which were important for VEGFR-3 to bind VEGFs with ELISA.
Recombinant proteins were purified from concentrated culture media of stable transfected S2 cells, through Ni-affinity and gel filtration chromatography. The yield of any types of VEGFR-3 domain is greater than 10 mg/liter culture media; for VEGF-C and -D is about 2-3 mg/liter culture media. However, only VEGF-C in complex with VEGFR-3-D3 has been successfully obtained. The SAXS data of VEGFR-3-D3, -D7, and VEGF-C in complex with VEGFR-D3 have been characterized by programs implant in ATSAS, ab-initio envelope of each protein was reconstructed by DAMMIF and Situs. Their homology models have been built according to crystal structures of VEGFR-2 or/and cKit and their models have been docked into average envelops and assessed. The results showed that the model of VEGFR-3-D3 can dock into SAXS envelope very well. According to ELISA data, in normal situation the effinity of VEGFR-3/VEGF-C was lower than VEGFR-1/VEGF-A. This may explain why so difficult to get the complex of VEGFR-3/VEGF-C. We have established the enzyme-linked immunosorbent assay (ELISA) for the study of VEGF ligand-receptor bindings. The result revealed that the binding affinity of VEGF-C with its coguate receptor VEGFR-3 is much lower than that of VEGF-A and VEGFR-1, and implied the difficulty to form VEGFR-3/VEGF-C complex.
According to the crystal structure of VEGFR-2 (D2-D3)/VEGF-C complex and sequence alignment of VEGFRs, we constructured several chimeric VEGFR-3, by substitute C1 or/and C3 regions of VEGFR-3 with VEGFR-1 sequence. Interestingly, the chimeric VEGFR-3 receptor gains the binding affinity with VEGF-A, particularly for the C1C3 VEGFR-3 mutant, and seems do not lost their binding affinity with VEGF-C. Due to the important roles of VEGF-A and VEGF-C in turmor growth and metastasis, based on the above results, we will next design a decoy VEGF receptor which can bind both VEGF-A and VEGF-C. Mean while, according to ELISA, we will investigate the appropriate condition for the VEGF-C/VEGFR-3 complex formation, in order to form the ligand-receptor compex for structural studies by SAXS and/or X-ray crystallography in the near future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:21Z (GMT). No. of bitstreams: 1
ntu-101-R98450012-1.pdf: 7545507 bytes, checksum: ac0a72b0af85255408ff8fa98c66b845 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents委員會審定書 I
摘要 II
ABSTRACT IV
目錄 VII
圖目錄 IX
縮寫表 X
第一章 緒論 1
1-1 血管內皮生長因子 1
1-2 血管內皮生長因子受體 2
1-3 血管內皮生長因子與血管內皮生長因子受體 3
1-4血管內皮生長因子及其受體之結構研究 4
1-5 小角度X光散射 5
1-6 研究動機與目的 7
第二章 實驗材料與方法 9
2-1 材料 9
質體 9
細胞株 9
蛋白 9
其他 9
2-2 昆蟲細胞表現系統 11
2-2.1原理 11
2-2.2方法 11
2-3 蛋白形成複合物之測試 13
2-3.1 方法 13
2-4 蛋白質性質測定 13
2-4.1 方法 13
2-5蛋白質親和分析 14
2-5-1方法 14
2-5 小角度X光散射實驗及數據分析 15
2-5.1方法 15
第三章 實驗結果與討論 16
3-1 蛋白質之表現、純化及複合體形成 16
3-2 VEGFR-3同源模型 18
3-3 小角度X光散射數值分析 19
3-4 AB-INITIO 蛋白質外型重建與蛋白質模型置入 21
3-6硬體模型 22
3-7 由酵素免疫分析法分析蛋白親和性 23
第四章 總結與未來展望 26
第五章 參考文獻 27
第六章 實驗圖表 31
dc.language.isozh-TW
dc.title血管內皮生長因子及其受器等之表現、純化及利用小角度散射進行結構分析zh_TW
dc.titleExpression, Purification, And Small Angle X-ray Scattering (SAXS) Analysis of Vascular Endothelial Growth Factors, Their Receptor And Complexen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹迺立,廖彥銓
dc.subject.keyword血管內皮生長因子,血管內皮生長因子受體,血管新生,血管增生,淋巴管增生,小角度X光散射,zh_TW
dc.subject.keywordvascular endothelial growth factors,Vascular endothelial growth factor receptors,vasculogenesis,angiogenesis,lymphangiogenesis,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
7.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved