Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6465
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬(Whei-Fen Wu)
dc.contributor.authorFan-Ching Hsiehen
dc.contributor.author謝汎擎zh_TW
dc.date.accessioned2021-05-17T09:14:01Z-
dc.date.available2017-08-20
dc.date.available2021-05-17T09:14:01Z-
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation陸、參考文獻
余建泓.2004大腸桿菌ClpQ蛋白的C端為負責其單元體間交互作用的區段(國立臺灣大學農業化學研究所碩士論文)
林佩宜.2006大腸桿菌ClpQ蛋白分子之間的聚合和其C端的功能(國立臺灣大學農業化學研究所碩士論文)
施如珊.2004大腸桿菌熱休克蛋白ClpY I domain之突變蛋白及其專一性基質辨
識之研究(國立臺灣大學農業化學研究所碩士論文)
翁于婷.2009大腸桿菌熱休克蛋白酶ClpYQ之基質SulA被辨識區域特性之研究
(國立臺灣大學農業化學研究所碩士論文)
張道遠.2004分析大腸桿菌ClpYQ蛋白酶之ClpY功能性羧基端(國立臺灣大學農 業化學研究所碩士論文)
連湘芸.2009大腸桿菌clpQ+lpY+及gspS+基因之研究:基因之調控及其基質辨
識(國立臺灣大學農業化學研究所博士論文 )
彭聲翔.2008大腸桿菌對基質SulA專一辨識位之研究(國立臺灣大學農業化學研究所碩士論文 )
黃吉心.2006大腸桿菌ClpQ與ClpY之交互作用與其蛋白酶之活化(國立臺灣大學農業化學研究所碩士論文)
黃齡誼.2011大腸桿菌ClpYQ蛋白酶透過ClpY對其基質SulA進行辨識、解構及轉
送至蛋白酶活性區之研究(國立臺灣大學農業化學研究所碩士論文 )




Azim, M. K., W. Goehring, H. K. Song, R. Ramachandran, M. Bochtler & P. Goettig, (2006) Characterization of the HslU chaperone affinity for HslV protease. Protein Sci. 14: 1357-1362.
Bochtler, M., L. Ditzel, M. Groll & R. Huber, (1997) Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. U S A 94: 6070-6074.
Bochtler, M., C. Hartmann, H. K. Song, G. P. Bourenkov, H. D. Bartunik & R. Huber, (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403: 800-805.
Breyer, W. A. & B. W. Matthews, (2001) A structural basis for processivity. Protein Sci. 10: 1699-1711.
Chuang, S. E., V. Burland, G. Plunkett, 3rd, D. L. Daniels & F. R. Blattner, (1993) Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134: 1-6.
Gottesman, S., (2003) Proteolysis in Bacterial Regulatory Circuits. Annu. Rev. Cell Dev. Biol. 19: 565-587.
Gottesman, S., W. P. Clark, V. d. Crecy-Lagard & M. R. Maurizi, (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. J. Biol. Chem. 268: 22618-22626.
Gottesman, S., P. Trisler & A. S. Torres-Cabassa, (1985) Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162: 1111-1119.
Guo, F., Maurizi, M. R., Esser, L. & Xia, D. (2002). Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277: 46743-46752.
Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
Hanson, P. I. & S. W. Whiteheart, (2005) AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6:519-529.
Herman, C., D. Thevenet, R. D'Ari & P. Bouloc, (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. U S A 92: 3516-3520.
Higashitani, A., Y. Ishii, Y. Kato & K. Horiuchi, (1997) Fuctional dissection of a cell-division inhibitor, SulA , of Escherichia coli and its negative regulation by Lon. Mol. Gen. Genet. 254:351-357.
Hsieh, F. C., Chen, C. T., Weng, Y. T, Peng, S. S., Chen, Y. C., Huang, L. Y., Hu, H. T., Wu, Y. L., Lin, N. C., Wu, W. F., (2011) Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates. J. Bacteriol. 193:5465-76.
Huang, H. & A. L. Goldberg, (1997) Proteolytic activity of the ATP-dependent protease HslVU can be uncoupled from ATP hydrolysis. J. Biol. Chem. 272: 21364-21372.
Ishii, Y. & F. Amano, (2001) Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem. J. 358: 473-480.
Ishikawa T, Maurizi M.R., Belnap D & Steven A.C., (2000) Docking of components in a bacterial complex. Nature 408: 667-668.
Jones, C. & I. B. Holland, (1985) Role of the SulB (FtsZ) Protein in division inhibition during the SOS response in Escherichia coli : FtsZ stabilizes the inhibitor SulA in maxicells. Proc. Natl. Acad. Sci. USA 82: 6045-6049.
Joshi S. A., Baker T. A & Sauer R. T.. 2003. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Mol. Microbiol. 48:67–76.
Kanemori, M., K. Nishihara, H. Yanagi & T. Yura, (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179: 7219-7225.
Kessel M, Wu W, Gottesman S, Kocsis E, Steven AC, Maurizi MR. (1996) Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett. 398:274–278.
Khattar, M. M., (1997) Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS. Lett. 414: 402-404.
Kwon, A. R., C. B. Trame & D. B. McKay, (2004) Kinetics of protein substrate degradation by HslUV. J. Struct. Biol. 146: 141-147.
Lau-Wong, I. C., T. Locke, M. J. Ellison, T. L. Raivio & L. S. Frost, (2008) Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol. Microbiol. 67: 516-527.
Lee, J. W., Park, E., Jeong, M. S., Jeon, Y. J., Eom, S. H., Seol, J. H. & Chung, C. H. (2009). HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. J. Biol. Chem. 284: 33475-33484.
Lee, Y.-Y., C.-F. Chang, C.-L. Kuo, M.-C. Chen, C. H. Yu, P.-I. Lin & W. F. Wu, (2003) Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J. Bacteriol. 185: 2393-2401.
Lien, H. Y., Shy, R. S., Peng, S. S., Wu, Y. L., Weng, Y. T., Chen, H. H., Su, P. C., Ng, W. F., Chen, Y. C., Chang, P. Y. &Wu, W. F. (2009). Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system. J. Bacteriol. 191: 4218-4231.
Missiakas, D., F. Schwager, J. M. Betton, C. Georgopoulos & S. Raina, (1996) Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO. J. 15: 6899-6909.
Park, E., Y. M. Rho, O. J. Koh, S. W. Ahn, I. S. Seong, J. J. Song, O. Bang, J. H. Seol, J. Wang, S. H. Eom & C. H. Chung, (2005) Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 280: 22892-22898.
Ramachandran, R., C. Hartmann, H. K. Song, R. Huber & M. Bochtler, (2002) Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. U S A 99: 7396-7401.
Rohrwild, M., O. Coux, H. C. Huang, R. P. Moerschell, S. J. Yoo, J. H. Seol, C. H. Chung & A. L. Goldberg, (1996) HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U S A 93: 5808-5813.
Rohrwild, M., Pfeifer, G., Santarius, U., Muller, S. A., Huang, H. C., Engel, A., Baumeister, W. & Goldberg, A. L. (1997). The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol. 4: 133-139
Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci.21: 289-296.
Seong, I. S., M. S. Kang, M. K. Choi, J. W. Lee, O. J. Koh, J. Wang, S. H. Eom & C. H. Chung, (2002) The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277: 25976-25982.
Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. & Huber, R. (2000). Mutational studies on HslU and its docking mode with HslV. Proc. Natl. Acad. Sci. U S A 97: 14103-14108.
Voges, D., Zwickl, P. & Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68: 1015-1068.
Wang, J., (2001) A corrected quaternary arrangement of the peptidase HslV and atpase HslU in a cocrystal structure. J. Struct. Biol. 134: 15-24.
Wang, J., J. J. Song, I. S. Seong, M. C. Franklin, S. Kamtekar, S. H. Eom & C. H. Chung, (2001) Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9: 1107-1116.
Wang, X., Huang, J., Mukherjee, A., Cao, C. & Lutkenhaus, J. (1997). Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179: 5551-5559.
Wickner, S., Maurizi, M. R. & Gottesman, S. (1999). Posttranslational quality control: folding, refolding, and degrading proteins. Science 286: 1888-1893.
Yakamavich JA, B. T. & Sauer RT., (2008) Asymmetric nucleotide transactions of the HslUV protease. J. Mol. Biol.. 380: 946-957.
Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M. S., Tanaka, K., Goldberg, A. L. proteins HslV and HslU that form a new ATP-dependent protease in Esche & Chung, C. H. (1996). Purification and characterization of the heat shockrichia coli. J. Biol. Chem.. 271:14035-14040.
Zolkiewski, M. (2006). A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol. Microbiol. 61: 1094-1100.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6465-
dc.description.abstract摘要
ATP依賴型蛋白酶對於控制關鍵調控蛋白表現量及降解異常蛋白質以維持微生物體內正常生理活動扮演著重要的角色。ClpYQ蛋白酶為ATP依賴型蛋白酶其中的一種由ClpY與ClpQ二種次單元體所組成。ClpY具有ATPase與chaperone的功能而ClpQ為一胜肽酶。ClpY可以自身形成的六元環而與ClpQ十二元體上下相接形成啞鈴狀的聚合分子。ClpY主要負責辨識、解構與運送基質SulA至ClpQ十二元體的活性中心進行分解。ClpY單元體由N、 I 與C三個domain組成各有其獨特的活性而I domain區域突出於N與C domain之外,其主要的功能尚未有清楚的界定。本研究發現ClpYQ蛋白酶對基質MBP-SulA的辨識結合主要是由loop2結構來進行。而I domain loop1(aa.137-150) 結構則是可能在ClpY在與MBP-SulA辨識結合後,ClpYQ蛋白酶進行降解作用時,阻擋多餘的MBP-SulA與ClpY六元環結合的功能。在pore I/loop2雙缺失突變蛋白ΔP1L2(aa 90-93;aa 175-209)在in vitro pull down實驗中有與MBP-SulA最低的相對活性,顯示基質的辨識結合由pore I與loop2共同負責。另外ClpY可以在沒有ATP存在下與SulA進行辨識結合,而且當ClpY形成六元環後只能與少量的MBP-SulA結合。綜合以上結果可推論出ClpY與SulA進行辨識結合的步驟:即ClpY在沒有ATP存在下與SulA進行辨識結合後,SulA-ClpY在ATP存在下與其他未結合的ClpY形成SulA-ClpY6或SulA-ClpY12的聚合,再與ClpQ十二元體形成SulA-ClpY6Q12聚合體,再進行解構、傳送及降解的步驟。而ClpYY408A突變蛋白無法形成穩定的六元環及ClpYQ聚合體,但仍保有部分的ATPase活性及部分的降解活性,顯示了ClpYQ聚合的穩定度對酵素的活性是重要的。
zh_TW
dc.description.abstractAbstract
ATP dependent proteases play important roles in controlling the levels of key regulatory protein and in the elimination of abnormal proteins to maintain normal physiological functions of microorgamisms. ClpYQ protease, one of ATP dependent proteases includes two subunits ClpY and ClpQ. ClpY acts as an ATPase and chaperone and ClpQ is a peptidase. ClpY is capble of forming a hexamer ring docked with ClpQ dodecamer to constitute a dumbbel-shaped complex. ClpY is responsible to recognize, unfold and traslocate substractes into the proteolytic site of ClpQ for degradation. Besides, ClpY is divided into three domains N, I and C domain. Each domain has it’s own distinct activity. I domain, a unique protruding domain of ClpY, is unclear for its function. In this study, our results demonstrated that ClpY I domain loop2 is responsible for the initial gripping of SulA and loop1 acts as a lid that is likely to prevent an excess of substracts binding for ClpY when ATP is present. ΔP1L2(aa 90-93;aa 175-209) showed the lowest binding activity with MBP-SulA at in vitro pull-down assay and these results indicated that pore I and loop2 are most responsiable for substrates binding. In addition, ClpY was capble of recognizing MBP-SulA wthout ATP to form SulA-ClpY complex and the ClpY hexamer can only bind a MBP-SulA molecule when ATP is present. These results also indicated that ClpY was capble to recognize SulA wthout ATP and formed SulA-ClpY complex for increasing its local surrounding substrate’s concentration and likely subsequently formed SulA-ClpY6 or SulA-ClpY12 complex docked with ClpQ for degradation when ATP is present. Y408A is not capble to form stable hexamer and ClpYQ oligomer maintains partial ATPase activity and degradation activity indicating that ClpYQ oligomerization is important for the enzyme activity.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:14:01Z (GMT). No. of bitstreams: 1
ntu-101-D95623002-1.pdf: 2270440 bytes, checksum: 123a171bec3737326a2bb80dfa590790 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
論文審定書……………………………………………………………………………i
謝誌……………………………………………………………………………………ii
摘要………………………………………………………………………………iii
Abstract………………………………………………………………………………iv
目錄…………………………………………………………………………v
表目錄………………………………………………………………………………vii
圖目錄……………………………………………………………………viii
附圖目錄…………………………………………………………………………x
壹、 前言……………………………………………………………………………1
一、 能量依賴蛋白酶………………………………………………………………1
二、 ClpYQ蛋白酶…………………………………………………………………2
三、 ClpQ結構及功能……………………………………………………………3
四、 ClpY結構及功能……………………………………………………………4
五、 ClpYQ蛋白酶與ATP之間的交互作用………………………………………6
六、 ClpY與ClpQ的交互作用……………………………………………………7
七、 ClpYQ蛋白酶之基質…………………………………....................9
八、 ClpYQ蛋白酶對於SulA之辨識……………………………………10
九、 研究動機與目的…………………………………………………………11
貳、 材料與方法……………………………………………………………………12
一、實驗材料…………………………………………………………………12
(一)菌株與質體…………………………………………………………………12
(二) 藥品與試劑………………………………………………………………12
二、方法………………………………………………………………………14
(一) 目標基因選殖……………………………………………………………14
(二) 蛋白質純化……………………………………………………………17
(三) SDS蛋白質膠體電泳……………………………………………………20
(四)西方墨點分析……………………………………………………………22
(五) 蛋白質活性測試…………………………………………………………26
(六) ATPase活性測定……………………………………………………………27
(七)等溫滴定量熱法………………………………………………………28
(八) 蛋白質聯結測試…………………………………………………………28
(九) Pull down assay……………………………………………………………29
(十)表面電漿共振生物分子感測法…………………………………………30
参、結果……………………………………………………………………………31
一、ClpY與ClpQ及其突變蛋白純化…………………………………………..31
二、ClpY及其突變蛋白對於ClpYQ分解MBP-SulA活性的影響………………31
三、以 in vitro pulldown探討ClpY對於MBP-SulA辨識結合的區域………34
四、以蛋白質聯結測試觀察ClpY及ClpY與ClpQ的聚合………………………38
五、ClpY T87I ATPase突變蛋白的定性分析…………………………………40
六、C domain突變蛋白ClpY Y408A的定性分析……………………………41
七、以表面電漿共振生物分子感測法進行即時偵測MBP-SulA與ClpY、pore I缺失突變蛋白與雙缺失突變蛋白的親和力……………………………… 43
肆、討論……………………………………………………………………………44
伍、結論……………………………………………………………………………49
陸、參考文獻………………………………………………………………………50






表目錄
表一、本論文所使用的菌株………………………………………………………55
表二、本論文所使用的質體………………………………………………………56
表三、本論文所使用的引子………………………………………………………57
表四、ClpY及其缺失突變蛋白於胞外降解MBP-SulA的相對活性………………58
表五、在不同核甘酸存在下ClpY與MBP-SulA在in vitro pulldown試驗中相對活性……………………………………………………………………………59
表六、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)進行即時偵測MBP-SulA與ClpY及其缺失突變蛋白之間的親和力……………60
表七、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)進行即時偵測於有ATP下MBP-SulA與ClpY及其缺失突變蛋白之間的親和力……………………………………………………………………………61









圖目錄
圖一、突變蛋白及及其突變區域位置………………………………………………62
圖二、帶有His tag ClpY與ClpQ的蛋白質純化…………………………………63
圖三、帶有MBP tag SulA蛋白質的純化…………………………………………64
圖四、純化帶有N端His tag的ClpYΔI domain缺失突變蛋白質………………65
圖五、純化帶有N端His tag的ClpY ΔD-loop缺失突變蛋白質…………………66
圖六、ClpYQ蛋白酶於胞外對MBP-SulA降解實驗………………………………67
圖七、ClpYQ與ClpY-ClpQE61C對MBP-SulA的降解實驗……………………68
圖八、ClpY I domain缺失突變蛋白對MBP-SulA的降解實驗……………………69
圖九、 ClpY ΔD-loop缺失突變蛋白對MBP-SulA的降解實驗及其蛋白質穩度.70
圖十、ClpY I domain loop2點突變蛋白對MBP-SulA的降解實驗…………71
圖十一、以不同核苷酸進行ClpY與MBP-SulA的in vitro pulldown實驗………72
圖十二、以 in vitro pulldown分析ClpQ對ClpY與MBP-SulA的辨識結合的影響…………………………………………………………………………73
圖十三、在有或無ATP下以 in vitro pulldown分析ClpYΔI+7Gly缺失突變蛋白與MBP-SulA辨識結合…………………………………………………74
圖十四、在有或無ATP下以 in vitro pulldown分析ClpYΔL1缺失突變蛋白與MBP-SulA辨識結合……………………………………………………75
圖十五、在有或無ATP下以 in vitro pulldown分析ClpYΔL2缺失突變蛋白與MBP-SulA辨識結合……………………………………………………76
圖十六、在有或無ATP下以 in vitro pulldown分析ClpY ΔD-loop缺失突變蛋白與MBP-SulA辨識結合………………………………………………77
圖十七、在有或無ATP下以 in vitro pulldown分析I domain loop2點突變蛋白與MBP-SulA辨識結合…………………………………………………78
圖十八、在有或無ATP下以 in vitro pulldown分析pore I缺失突變蛋白ΔP1與MBP-SulA辨識結合……………………………………………………79
圖十九、在有或無ATP下以 in vitro pulldown分析雙缺失突變蛋白ΔP1L1與MBP-SulA辨識結合……………………………………………………80
圖二十、在有或無ATP下以 in vitro pulldown分析雙缺失突變蛋白ΔP1L2與MBP-SulA辨識結合……………………………………………………81
圖二十一、ClpYΔL2缺失突變蛋白與雙缺失突變蛋白ClpYΔP1L2 in vitro pulldown之結果…………………………………………………………82
圖二十二、ClpY pore I缺失突變蛋白及pore I/I domain雙缺失突變蛋白對MBP-SulA的降解實驗…………………………………………………83
圖二十三、以蛋白質聯結測試觀察ClpY自身聚合及ClpY與ClpQ的聚合……84
圖二十四、以蛋白質聯結測試觀察ClpY與MBP-SulA的結合…………………85
圖二十五、以蛋白質聯結測試觀察ClpYΔL1缺失突變蛋白自身聚合及ClpYΔL1缺失突變蛋白與ClpQ的聚合…………………………………………86
圖二十六、以蛋白質聯結測試觀察ClpYΔL2缺失突變蛋白自身聚合及ClpYΔL2缺失突變蛋白與ClpQ的聚合…………………………………………87
圖二十七、ClpY T87I ATPase突變蛋白對MBP-SulA的降解實驗………………88
圖二十八、ClpY T87I ATPase突變蛋白ATPase的相對活性……………………89
圖二十九、以等溫滴定量熱法(Isothermal Titration Calorimetry, ITC) 進行ClpY、ClpYT87I與ATPγS結合測定………………………………90
圖三十、以蛋白質聯結測試觀察ClpY T87I ATPase突變蛋白自身聚合及ClpY T87I ATPase突變蛋白與ClpQ的聚合………………………………91
圖三十一、ADP存在下以蛋白質聯結測試觀察ClpY T87I ATPase突變蛋白自身聚合及ClpY T87I ATPase突變蛋白與ClpQ的聚合…………………92
圖三十二、ClpY Y408A突變蛋白對MBP-SulA的降解實驗……………………93
圖三十三、ClpY Y408A突變蛋白ATPase的相對活性……………………………94
圖三十四、以蛋白質聯結測試觀察ClpY Y408A突變蛋白自身聚合及ClpY Y408A突變蛋白與ClpQ的聚合………………………………………………95
圖三十五、在有或無ATP下以 in vitro pulldown分析ClpY Y408A突變蛋白與MBP-SulA辨識結合……………………………………………………96
圖三十六、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)進行即時偵測MBP-SulA與ClpY之間的親和力………………………97
圖三十七、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)進行即時偵測MBP-SulA與ClpYΔP1之間的親和力……………………98
圖三十八、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)進行即時偵測MBP-SulA與ClpYΔP1L1之間的親和力 ………………99
圖三十九、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)進行即時偵測MBP-SulA與ClpYΔP1L2之間的親和力………………100
圖四十、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)在ATP存在下進行即時偵測MBP-SulA與ClpY之間的親和力 ………101
圖四十一、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)在ATP存在下進行即時偵測MBP-SulA與ClpYΔP1之間的親和力…102
圖四十二、以表面電漿共振生物分子感測法(Surface plasmon resonance assays)在ATP存在下進行即時偵測MBP-SulA與ClpYΔP1L1之間的親和力…103
圖四十三、以表面電漿共振生物分子感測法(Surface plasmon resonance assays) 在ATP存在下進行即時偵測MBP-SulA與ClpYΔP1L2之間的親和力…104
圖四十四、ClpY 與MBP-SulA辨識結合流程……………………………………105


附圖目錄
附圖一、大腸桿菌ClpYQ結構圖………………………………………………106
附圖二、大腸桿菌ClpY六元環與單元體結構圖………………………………107
附圖三、大腸桿菌ClpY與ClpQ在無ATP下以凝膠過濾法純化其分子大小之分布………………………………………………………………………108
附圖四、大腸桿菌ClpY pore I site之結構………………………………………109
附圖五、基質促進ClpYQ聚合與降解流程……………………………………110
dc.language.isozh-TW
dc.title大腸桿菌ClpYQ蛋白酶之ClpY I domain區域双環構造與孔洞區所扮演角色zh_TW
dc.titleThe role of ClpY I domain double loops structure and pore site in Escherichia coli ClpYQ proteaseen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳昭瑩(Chao-Ying Chen),顏瑞泓(JUI-HUNG YEN),陳建德(CHIEN-TEN CHEN),黃楓婷(Feng-Ting Huang)
dc.subject.keywordClpYQ,MBP-SulA,pore I site,I domain,pull down,基質辨識,zh_TW
dc.subject.keywordClpYQ,MBP-SulA,pore I site,I domain,pull down,substrate recognition,en
dc.relation.page110
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved