請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64658完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清 | |
| dc.contributor.author | Shih-Hao Lin | en |
| dc.contributor.author | 林世皓 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:57:01Z | - |
| dc.date.available | 2012-08-16 | |
| dc.date.copyright | 2012-08-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | Andrushchenko, V.A., Vovkodav, I.F., Karlash, V.L. and Ulitko, A.F., “Coefficient of electromechanical coupling in piezoceramic disks,” International Applied Mechanics, 11(4), pp. 377-382, 1975.
Bechmann, R. and Parsons, P.L., “Piezoelectric behaviour of partially plated square plates vibrating in contour modes,” Proceedings of the Physical Society, 64(B), pp. 706-712, 1951. Bent, A.A. and Hagood, N.W., ”Improved performance in piezoelectric fiber composites using interdigitated electrodes,” Proceedings of the SPIE, Vol. 2441, pp. 196-212,1995. Bent, A.A., “Active fiber composite material systems for structural control appliocation, ” Part of SPIE conference on Inductrial and commercial Applications of Smart Structures Technologies, SPIE Vol. 3674, pp.166-177,1999. Bobnar, V., Kutnjak, Z. and Levstik, A., “Temperature dependence of material constants of PLZT ceramics,” Journal of the European Ceramic Society, 19, pp. 1281-1284, 1999. Butters, J.N. and Leendertz, J.A., “Speckle pattern and holographic technique in engineering metrology,” Opt. Laser Technol. 31 1 26–30, 1971. Cady, W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946. Chai, W.K., Han, Y., Higuchi, K. and Tzou, H.S., “Micro-actuation characteristics of rocket conical shell sections,” Journal of Sound and Vibration, 293, pp. 286-298, 2006. Chen, C.Q. and Shen, Y.P., “Piezothermoelasticity analysis for a circular cylindrical shell under the state of axisymmetric deformation,” International Journal of Engineering Science, 34(14), pp. 1585-1600, 1996. Chen, Q., Natale, D., Neese, B., Ren, K., Lin, M., Zhang, Q. M., Pattom, M., Wang, K.W., Fang, H. and Im, E., “Piezoelectric polymers actuators for precise shape control of large scale space antennas”, SPIE's 14 th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, California, March 18-22, 2007. Creath, K. and Slettemoen, G.Å., “Vibration-observation techniques for digital speckle-pattern interferometry,” J. Opt. Soc. Am. A 2 10 162936, 1985. Datta, S., Kirikera, G..R., Schulz, M.J. and Sundaresan, M.J., “Continuous sensors for structural health monitoring,” Proceedings of the SPIE, Vol. 5046, pp. 164-175, 2003. Detaint, J., Schwartzel, J. and Joly, C., “Energy trapping resonators and interated filters using the AT cut of quartz like materials,” IEEE Frequency Control Symposium, 4, pp. 639-647, 1992. Ding, W., Calabri, L., Kohlhaas, K.M., Chen, X., Dikin, D.A. and Ruoff1, R.S., “Modulus, Fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes,” Experimental Mechanics, 47(1), pp. 25-36, 2007. Doval, A.F., Ferna′ndez. J.L., Pe′rez-Amor, M., Valera, J.D.R. and Jones, J.D.C., “Contrast enhanced and phase controlled stroboscopic additive fiber optic TV-holography for whole field out-of-plane vibration analysis,” Opt. Lasers Eng. 25 323-42, 1996. EerNisse, E.P., “Variational method for electroelastic vibration analysis,” IEEE Trans. Sonics Ultrason. 14 4 153–160, 1967. EerNisse, E.P., Ward, R.W., Watts, M.H., Wiggins, R.B. and Wood, O.L., “Experimental evidence for mode shape influence on acceleration-induced frequency shifts in quartz resonators,” IEEE Transactons on Ultrasonics, Ferroelectrics, and Frequency Control, 37(6), pp. 566-570, 1990. Fung, R.F., Chao, S.C. and Kung, Y.S., “Piezothermoelastic analysis of an optical beam deflector,” Sensors and Actuators A, 87, pp. 179-187, 2001. Grinchenko, V.T., Karlash, V.L., Meleshko, V.V. and Ulitko, A.F., “Investigation of planar vibrations of rectangular piezoceramic plates,” Soviet Applied Mechanics, 12, pp. 483-488, 1976. Guo, N., Cawley, P. and Hitchings, D., “The finite element analysis of the vibration characteristics of piezoelectric disks,” J. Sound Vib.159 1 115-38, 1992. Gupta, V.K., Seshu, P. and Kurien, Issac K. “Finite element and experimental investigation of piezoelectric actuated smart shells,” AIAA Journal, 42(10), pp. 2112-2123, 2004. Hagood, N.W., Kindel, R., Ghandi, K., and Gaudenzi, P., “Improving transverse actuation of piezoceramics using interdigitated surface electrode,” SPIE Paper No. 1917-25, Proceedings of the 1993 North American Conference on Smart Structures and Materials, pp. 341-252,1993. Holland, R., “Contour extensional resonant properties of rectangular piezoelectric plates,” IEEE Trans. Sonics Ultrason. 15 2 97–105, 1968. Honner, M., Lito, P. and Svantner, M., “Thermography analyses of the hole-drilling residual stress measuring technique,” Infrared Physics and Technology, 45, 131-142, 2004. Huang, C.H. and Ma, C.C., “Vibration characteristics for piezoelectric cylinders using amplitude-fluctuation electronic speckle pattern interferometry,” AIAA J. 36 (12) 2262–2268, 1998. Huang, C.H., Lin, Y.C. and Ma, C.C., “Theoretical analysis and experimental measurement for resonant vibration of piezoelectric circular plates,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51 1 12-24, 2004. Huang, Y.H. and Ma, C.C., “Forced vibration analysis of piezoelectric quartz plates in resonance,” Sensors and Actuators A 149 320-330, 2009. Huang, Y.H. and Ma, C.C., “Finite element and experimental results of transverse vibration for GT-cut and SC-cut quartz plates with fixed and free boundary conditions and multiple methods of excitation,” Smart Mater. Struct. 18 085017, 2009. Kastberger, G. and Stachl, R., “Infrared imaging technology and biological applications,” Behavior Research Methods, Instruments, & Computers, 35(3), pp. 429-439, 2003. Kharouf, N. and Heyliger, P.R., “Axisymmetric free vibration of homogeneous and laminated piezoelectric ceramics disks,” J. Sound Vib. 174 4 539-61, 1994. Kunkel, H.A., Locke, S. and Pikeron, B. “Finite-element analysis fo vibrational modes in piezoelectric ceramics disks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37 4 316-28, 1990. Kosinski, J.A., Stewart, J.T., Gualtieri, J.G., Himmel, J.S., McGowan, R.C., Huynh, D., Ballato, A. and Filler, R.L., “The influence of mode shape on the acceleration sensitivity of SAW resonators,” IEEE Ultrasonics Symposium, pp. 183-186, 1995. Lee, C.K. and Wu, G.Y., “High performance doppler interferometer for advanced optical storage systems,” Japanese Journal of Applied Physics, 38(3B), pp. 1730-1741 1999. Lee, H.J. and Saravanos, D.A., “A mixed multi-field finite element formulation for thermopiezoelectric composite shells,” International Journal of Solids and Structures, 37, pp. 4949-4967, 2000. Lewis, J.A. and Inman, D.J., “Finite element modeling and active control of an inflated torus using piezoelectric devices,” Journal of Intelligent Material Systems and Structures, 12, pp. 819-833, 2001. Løkberg, O.J. and Hogmoen, K., “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E: Sci. Instrum. 9 10 847-51, 1976. Løkberg, O.J., “Mapping of in-plane vibration modes by electronic speckle pattern interferometry,” Opt. Eng. 24 2 356-9, 1985. Ma, C.C. and Huang, C.H., “The investigation of three-dimensional vibration for piezoelectric rectangular parallelepipeds using the AF-ESPI method,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 (1) 142–153, 2001. Ma, C.C., Lin, H.Y., Lin, Y.C. and Huang, Y.H.,“Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate,” Journal of the Acoustical Society of America, 119(3), pp. 1476-1486, 2006. Mason, W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950. Mindlin, R.D., “Thickness-shear and flexural vibrations of crystal plates,” Journal of Applied Physics, 22(3), pp. 315-323, 1951. Mindlin, R.D., “Anharmonic, thickness-twist overtones of thickness-shear and flexural vibrations of rectangular, AT-cut quartz plates,” Journal of the Acoustical Society of America, 42(6), pp. 1268-1277, 1951. Mindlin, R.D., “Forced thickness-shear and flexural vibrations of piezoelectric crystal plates,” Journal of Applied Physics, 22(1), pp. 83-88, 1952. Mindlin, R.D. and Deresiewicz, “Thickness-shear and flexural vibrations of rectangular crystal plates,” Journal of Applied Physics, 26(12), pp. 1435-1442, 1955. Nelson, L.J., Bowen, C.R., Stevens, R., Cain, M. and Stewart, M., “Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimization of piezofibre composites,” Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics. Proceedings of the SPIE, Vol. 5053, pp. 566-567, 2003. Nestorović, Trajkov, T., Köppe, H. and Gabbert, U., “Vibration control of a funnel-shaped shell structure with distributed piezoelectric actuators and sensors,” Smart Materials and Structures, 15, pp. 1119-1132, 2006. Oh, I.K., Han, J.H. and Lee, I., “Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectric loads,” Journal of Sound and Vibration, 233(1), pp. 19-40, 2000. Poisson, S.D., 'L’Euilibre et le movement des corps elastiques,' Memories de L’Academic Royale des Sciences de L’Institute de France 8 357-570, 1829. Qiu, W., Kanga, Y.L., Qin, Q.H., Sun, Q.C. and Xu, F.Y., “Study for multilayer piezoelectric composite structure as displacement actuator by Moiré interferometry and infrared thermography experiments,” Materials Science and Engineering, 452-453(A), pp. 228–234, 2007. Rastogi, P.K., “Holographic Interferometry,” Germany Springer-Verlag, 1994. Reinstädtler, M., Kasai, T., Rabe, U., Bhushan, B. and Arnold, W., “Imaging and measurement of elasticity and friction using the TRmode,” Journal of Physics D: Applied Physics, 38, R269-R282, 2005. Rogacheva, N.N., “The theory of piezoelectric shells and plates,” CRC Press, USA, 1994. Sarua, A., Ji H., Kuball, M., Uren, M.J., Martin, T., Hilton, K.P. and Balmer, R.S., “Integrated micro-raman/infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures,” IEEE Transactions on Electron Devices, 53(10), pp. 2438-2447, 2003. Schroth, A., Lee, C., Matsumoto, S. and Maeda, R., “Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners,” Sensors and Actuators, 73(A), pp. 144-152, 1999. Shaw, E.A.G., “On the resonant vibrations of thick barium titanate disks,” J. Acoust. Soc. Amer. 28 1 38–50, 1956. Shellebear, M.C. and Tyrer, J.R., “Application of ESPI to three dimensional vibration measurement,” Opt. Lasers Eng. 15 43–56, 1991. Tiersten, H.F., “Linear Piezoelectric Plate Vibrations,” New York:Plenum, 1969. Tomalczyk, K. and Wiecek, B., “Thermal analysis and thermographic measurements of piezoelectric transformers,” Quantitative Infrared Thermography (QIRT), 2006. Wang, W.C., Hwang, C.H. and Lin, S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Applied Optics, 35(22), pp. 4502-4509, 1996. Yang, J., Zhou, H.G. and Wang, Z.Y., “Vibrations of an asymmetrically electroded piezoelectric plate,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, pp. 2031-2038, 2005. Zhou, Y.S. and Tiersten, H.F., “On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports,” Journal of Applied Physics, 69(5), pp. 2862-2870, 1991. Zhou, S., Liang, C. and Roger, C.A., “Integration and design of piezoceramic elements in intelligent structures,” Journal of Intelligent Material Systems and Structures, 6(6), pp. 733-742, 1995. 黃吉宏,應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題,國立台灣大學機械工程研究所博士論文,87年6月。 林憲陽,壓電陶瓷複合層板動態特性之數值分析與實驗量測,國立台灣大學機械工程研究所博士論文,91年6月。 林育志,壓電元件於不同介質中的動態特性研究與實驗量測,國立台灣大學機械工程研究所博士論文,93年6月。 簡偉勝,應用混合法量測壓電材料常數並探討其動態特性與溫度效應,國立台灣大學機械工程研究所碩士論文,96年7月。 郭椿億,壓電矩形板動態特性之理論分析及電極設計之影響研究,國立台灣大學機械工程研究所碩士論文,97年7月。 黃育熙,壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算與理論解析,國立台灣大學機械工程研究所碩士論文,98年10月。 王多聞,主動纖維複材的脫層偵測與驗證,國立交通大學機械工程研究所博士論文,99年5月。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64658 | - |
| dc.description.abstract | 本文對無鉛鈦酸鋇壓電陶瓷材料的三維動態特性進行完整的研究與分析,包括壓電陶瓷矩形平板,壓電陶瓷圓盤,壓電陶瓷圓環以及壓電纖維複材薄板。文中利用實驗量測、數值計算、與理論解析的方法對壓電材料的三維動態特性進行研究,證明鈦酸鋇材料是不錯的壓電陶瓷材料。對於壓電材料於高頻面內振動時的全域溫度分佈,亦進行不同幾何形狀平板的實驗量測與數值計算的研究;並以壓電纖維複材為致動器,應用壓電陶瓷平板的電極設計概念,致動鋁板對鋁板進行三維動態特性的研究分析,深入的瞭解各種模態的振動特性與其最佳效率的致動方式。
本文使用多種方法進行壓電材料的實驗量測與分析,首先是面外振動的部份,雷射都卜勒振動儀應用動態系統對壓電材料單點的面外振動進行穩態掃頻量測,可獲得壓電材料的面外共振頻率;接著使用全域式的電子斑點干涉術可針對壓電材料的面外的模態振形與共振頻率進行量測,全域式的電子斑點干涉術也可以進行面內的模態振形與共振頻率的量測,並記錄激振電壓可作為三維振動效率的參考依據;阻抗分析儀則以壓電材料的電性量測並可對應面內振動的共振頻率,同時亦可獲得反共振頻率的量測,再經由計算得到機電耦合係數,作為壓電材料於各模態的動態效率指標,並可以與電子斑點干涉術的面內激振電壓對應;紅外線熱像儀可即時且全域的量測壓電材料的溫度分佈。理論解析則解析了壓電圓盤的軸向和徑向的振動特性,獲得壓電圓盤的三維共振頻率。所有實驗量測與理論解析結果皆與有限元素數值計算進行比較,不只在共振頻率與振動模態可互相對應,正規化位移量與實驗量測皆與壓電材料於各方向振動電壓強度相符,鋁板振動的效率在穩態掃頻量測、全域式的電子斑點干涉術量測和阻抗分析有很好的對應,研究成果呈現各種壓電材料的三維動態特性於實驗量測、數值計算、與理論解析皆達到相當優異的一致性,本文成果在學術研究領域或工業界的實際應用,提供了壓電材料完整的振動資訊與有效的電極設計方法。 | zh_TW |
| dc.description.abstract | The three-dimensional dynamic characteristics of barium titanium piezoceramic material of lead-free is studied and analysis in this article, including piezoceramic rectangular plate, piezoceramic disc, piezoceramic ring and piezoelectric fiber composite plate. The study of three-dimensional dynamic characteristic of piezoceramic material is obtained by experiment measurements, finite element method (FEM) and theoretical analysis. The barium titanium is one kind of piezoceramic material with good electromechanical coupling efficiency. The temperature distribution of piezoelectric material in high frequency in-plane vibration is studied by experiment measuring and numerical calculating for different geometry plates. In order to deeply realize vibrating characteristics and best exciting efficiency of aluminum plate, we take the piezoelectric fiber composite material as the actuator and the aluminum plate is excited by electrode design of piezoelectric fiber composite plate.
Several experimental techniques are used to measure the dynamic characteristics of piezoelectric materials in this study. First part is out-of-plane vibration, the point-wisely measurement system, laser Doppler vibrometer (LDV), can obtain out-of-plane resonant frequencies by dynamic signal swept-sine analysis the piezoceramic plate. Second, the full-filed optical technique, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), can measure simultaneously the resonant frequencies and mode shapes for out-of-plane vibration. The resonant frequencies and mode shapes of in-plane vibration are also measured by AF-ESPI. The excited voltages for mode shapes refer to the efficiency of three-dimensional vibration. Third, the correspondent in-plane resonant frequencies and anti-resonant frequencies are obtained by impedance analysis, and the electromechanical coupling coefficients can be calculated from impedance spectrum to perform the efficiency of resonance modes. Forth, infrared thermography is also full-field optical technique to measure the distribution of temperature filed. In theoretical analysis, the resonant frequencies, transverse and extensional vibration displacements of piezoelectric ceramic disc are derived and three-dimensional resonant frequencies are obtained. All the results of the experimental measurements and theoretical solutions are compared with the FEM results. Not only resonant frequency and mode shape have good agreement, the normalize displacement and experiment measurement correspond to the exicting voltage. The vibration efficiency of aluminum plate has good results in dynamic signal swept-sine analysis, AF-ESPI and impedance analysis. It is excellent consistence between resonant frequencies, mode shapes and normalized displacements on the dominant vibration motion by experimental measurements, finite element numerical calculations, and theoretical analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:57:01Z (GMT). No. of bitstreams: 1 ntu-101-D95522037-1.pdf: 58698087 bytes, checksum: 3b52d517ebabc024ef62bdc7695712e2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 內容簡介 9 第二章 實驗原理、架設與壓電基本理論 13 2-1 雷射都卜勒振動儀 13 2-1-1 都卜勒效應於動態量測之簡介 13 2-1-2 雷射都卜勒振動儀量測原理 15 2-1-3 雷射都卜勒動態信號分析量測系統 17 2-2 電子斑點干涉術 18 2-2-1 面外振動量測 19 2-2-2 面內振動量測 23 2-2-3 理論推導之位移量說明 24 2-3 阻抗分析儀於壓電材料之量測 26 2-4 紅外線熱像儀於壓電材料全場溫度分佈之量測 28 2-4-1 紅外線溫度感應原理 28 2-4-2 紅外線熱像儀簡介與實驗量測架設 30 2-5 壓電基本理論 32 第三章 鈦酸鋇壓電陶瓷平板三維振動特性 37 3-1 壓電陶瓷矩形平板振動特性分析 37 3-1-1 無鉛壓電陶瓷矩形平板實驗方法與有限元素數值分析 37 3-1-2 壓電陶瓷矩形平板實驗量測與有限元素數值分析結果 39 3-2 壓電陶瓷圓盤振動特性分析 41 3-2-1 壓電陶瓷圓盤理論解析 42 3-2-2 壓電陶瓷圓盤實驗方法與有限元素數值分析 49 3-2-3 壓壓電陶瓷圓盤實驗結果與有限元素數值分析和理論解析結果 50 3-3 壓電陶瓷圓環振動特性分析 52 3-3-1 壓電陶瓷圓環實驗方法與有限元素數值分析 52 3-3-2 壓電陶瓷圓環實驗量測與有限元素數值分析結果 53 3-4 鈦酸鋇壓電陶瓷平板三維振動特性總結 54 第四章 壓電陶瓷平板的溫度升應 57 4-1 不同幾何形狀壓電陶瓷平板自由邊界下之溫度實驗量測 57 4-2 壓電陶瓷平板自由邊界下之溫度效應結論 62 第五章 應用電極設計於鋁板激振之量測與分析 63 5-1 壓電纖維複材簡介 63 5-1-1 壓電纖維複材實驗方法與數值分析 64 5-1-2 單邊固定的壓電纖維複材薄板的實驗與數值分析結果 65 5-2 電極設計於鋁板之動態特性 66 5-2-1 實驗方法與數值分析 66 5-2-2 鋁板自由邊界下四種基本電極的面外振動特性結果 68 5-2-3 鋁板自由邊界下四種基本電極的面內振動特性結果 70 5-3 鋁板三維振動總結及最佳化電極設計 71 第六章 結論與展望 73 6-1 本文成果 73 6-2 未來展望 74 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阻抗分析儀 | zh_TW |
| dc.subject | 壓電陶瓷矩形平板 | zh_TW |
| dc.subject | 壓電陶瓷圓盤 | zh_TW |
| dc.subject | 壓電陶瓷圓環 | zh_TW |
| dc.subject | 壓電纖維複材 | zh_TW |
| dc.subject | 電 極設計 | zh_TW |
| dc.subject | 共振頻率 | zh_TW |
| dc.subject | 振動模態 | zh_TW |
| dc.subject | 雷射都卜勒振動儀 | zh_TW |
| dc.subject | 電子斑點干涉術 | zh_TW |
| dc.subject | 紅外線熱像儀 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | piezoceramic disc | en |
| dc.subject | piezoceramic ring | en |
| dc.subject | piezoceramic rectangular plate | en |
| dc.subject | finite element method | en |
| dc.subject | infrared thermography | en |
| dc.subject | Impedance analyzer | en |
| dc.subject | AF-ESPI | en |
| dc.subject | LDV | en |
| dc.subject | electrode design | en |
| dc.subject | mode shape | en |
| dc.subject | resonant frequency | en |
| dc.subject | piezoelectric fiber composite | en |
| dc.title | 無鉛壓電陶瓷與壓電複材平板動態特性及應用電極設計於鋁板激振之實驗量測與分析 | zh_TW |
| dc.title | Experimental Measurement and Theoretical Analysis of
Dynamic Characteristics for Lead-free Piezoceramic and Piezoelectric Fiber Composite Plates and the Application of Electrode Design for Aluminum plate excitation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 趙振綱,尹慶中,陳俊杉,黃吉宏,應宜雄 | |
| dc.subject.keyword | 壓電陶瓷矩形平板,壓電陶瓷圓盤,壓電陶瓷圓環,壓電纖維複材,電 極設計,共振頻率,振動模態,雷射都卜勒振動儀,電子斑點干涉術,阻抗分析儀,紅外線熱像儀,有限元素法, | zh_TW |
| dc.subject.keyword | piezoceramic rectangular plate,piezoceramic disc,piezoceramic ring,piezoelectric fiber composite,resonant frequency,mode shape,electrode design,LDV,AF-ESPI,Impedance analyzer,infrared thermography,finite element method, | en |
| dc.relation.page | 225 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 57.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
