Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorE-Jui Wengen
dc.contributor.author翁藝睿zh_TW
dc.date.accessioned2021-06-16T22:56:52Z-
dc.date.available2017-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citation[1] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake, “Real-Time Human Pose Recognition in Parts from Single Depth Images,” IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1297-1304, June 2011.
[2] Y. Zhu and K. Fujimura, “A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences,” Sensors 10, no. 5, pp. 5280-5293, May 2010.
[3] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object Recognition Using Shape Contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002.
[4] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” IEEE International Conference on Computer Vision and Pattern Recognition, pp. 886-893, June 2005.
[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object Detection with Discriminatively Trained Part Based Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627-1645, Sept. 2010.
[6] J. Shi and C. Tomasi, “Good Features to Track,” IEEE International Conference on Computer Vision and Pattern Recognition, pp. 593-600, June 1994.
[7] J. Chai and J. K. Hodgins, “Performance Animation from Low-dimensional Control Signals,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 686-696, July 2005.
[8] D. Chetverikov, D. Stepanov, and P. Krsek, “Robust Euclidean Alignment of 3D Point Sets: The Trimmed Iterative Closest Point Algorithm,” Image and Vision Computing, vol. 23, no.3, pp. 299-309, March 2005.
[9] Y. R. Chen, C. M. Huang, and L. C. Fu, “Visual Tracking of Human Head and Arms with a Single Camera,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3416-3421, Oct. 2010.
[10] S. Knoop, S. Vacek, and R. Dillmann, “Fusion of 2D and 3D Sensor Data for Articulated Body Tracking,” Robotics and Autonomous Systems, vol. 57, no. 3, pp. 321-329, March 2009.
[11] A. Baak, M. Muller, G. Bharaj, H. P. Seidel, and C. Theobalt, “A Data-Driven Approach for Real-Time Full Body Pose Reconstruction from a Depth Camera,” IEEE International Conference on Computer Vision, pp. 1092-1099, Nov. 2011.
[12] X. H. Wu, M. C. Su, ans P. C. Wang, “A Hand-Gesture-Based Control Interface for a Car-Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4644-4648, Oct. 2010.
[13] H. K. Lee and J. H. Kim, “An HMM-Based Threshold Model Approach for Gesture Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 961- 973, Oct. 1999.
[14] H. D. Yang, S. Sclaroff, and S. W. Lee, “Sign Language Spotting with a Threshold Model Based on Conditional Random Fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 7, pp. 1264 -1277, July 2009.
[15] D. Kim, J. Song, and D. Kim, “Simultaneous Gesture Segmentation and Recognition Based on Forward Spotting Accumulative HMMs,” Pattern Recognition, vol. 40, no. 11, pp. 3012-3026, Nov. 2007.
[16] H. I. Suk, B. K. Sin, and S. W. Lee, “Hand gesture recognition based on dynamic Bayesian network framework,” Pattern Recognition, vol. 43, no. 9, pp. 3059-3072, Sept. 2010.
[17] G. Fang, W. Gao, and D. Zhao, “Large-Vocabulary Continuous Sign Language Recognition based on Transition-Movement Models,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, no. 1, pp. 1-9, Jan. 2007.
[18] J. K. Aggarwal and M.S. Ryoo, “Human Activity Analysis: A Review,” ACM Computing Surveys, vol. 43, no. 3, article 16, April 2011.
[19] A. F. Bobick and J. W. Davis, “The Recognition of Human Movement Using Temporal Templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp. 257-267, March 2001.
[20] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining Actionlet Ensemble for Action Recognition with Depth Cameras,” IEEE International Conference on Computer Vision and Pattern Recognition, June 2012.
[21] J. Yuan, Z. Liu , and Y. Wu, “Discriminative Video Pattern Search for Efficient Action Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1728-1743, Sept. 2011.
[22] J. Alon, V. Athitsos, Q. Yuan, ans S. Sclaroff, “A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1685-1699, Sept. 2009.
[23] H. Ning, W. Xu, Y. Gong, and T. Huang, “Latent Pose Estimator for Continuous Action Recognition,” European Conference on Computer Vision, pp. 419-433, Oct. 2008.
[24] Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao, “A Unified Framework for Locating and Recognizing Human Actions,” IEEE International Conference on Computer Vision and Pattern Recognition, pp. 25-32, June 2011.
[25] Microsoft Corp. Redmond WA. Kinect for Xbox 360.
[26] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, Feb. 2002.
[27] M. Stamp, “A Revealing Introduction to Hidden Markov Models,” April 2012
[28] F. Lv, and R. Nevatia, “Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching,” IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1-8, June 2007.
[29] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, Nov.1986.
[30] D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of Careful Seeding,” ACM-SIAM Symposium on Discrete algorithms, pp. 1027-1035, Jan. 2007.
[31] J. Matas, C. Galambos, and J. Kittler, “Robust Detection of Lines Using the Progressive Probabilistic Hough Transform,” Computer Vision and Image Understanding, vol. 78, no. 1, pp. 119-137, April 2000.
[32] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning Realistic Human Actions from Movies,” IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1-8, June 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64645-
dc.description.abstract在這篇論文中,我們提出一個迭代的方式結合彩色和深度資訊進行使用者動作以及姿勢辨識。不同於以往利用事先定義好的姿勢進行人體骨架初始化,我們利用基於深度的影像梯度統計特徵(HOG)建造一個特徵姿勢資料庫,當使用者進入相機視野後,我們便自動搜尋此資料庫尋找最適合的起始骨架,然後我們利用粒子濾波器(Particle Filter)結合2D和3D的特徵進行人體上半身骨架追蹤。同時,我們將追蹤的骨架資訊當作隱藏式馬可夫模型(Hidden Markov Model)的輸入值進行線上動作切割和辨識,為了提升辨識準確性和達到線上動作切割,我們修改了隱藏式馬可夫模型中的機率計算過程,並利用其機率的變化決定動作的開始和結束,此外我們也利用動作辨識的結果及特徵姿勢資料庫來矯正錯誤的骨架追蹤。最後,我們透過實驗來驗證此系統的整體效能和可靠性。zh_TW
dc.description.abstractIn this thesis, we propose an iterative approach which can not only recognize human actions but also estimate human upper body pose by combining color and depth information. Instead of using predefined pose to initialize human skeleton, we construct a key pose database with depth HOG feature as searching index. When user enters the camera view, we automatically search the database to get the initial skeleton. Then we use multiple importance sampling particle filter to track human upper body parts with 2D and 3D features as evidences. At the same time, we feed the tracking joints into the hidden Markov models (HMM) to on-line spot and recognize the performed action. In order to increase the recognition accuracy and perform on-line spotting, we modify the probability calculating process in HMM and propose an action spotting scheme based on the gradient of HMM probability. Besides, we apply the action recognition results and reuse our key poses database to rectify tracking error. To validate the effectiveness of the proposed action recognition approach, extensive experiments have been performed, of which the results appear to be quite promising.en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:56:52Z (GMT). No. of bitstreams: 1
ntu-101-R99922021-1.pdf: 2046037 bytes, checksum: e39376398d6a1720a3d370d49fe4bc84 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Description 3
1.3 Challenges 5
1.4 Related Work 7
1.4.1 Pose Estimation 7
1.4.2 Action Spotting 9
1.4.3 Action Recognition 10
1.5 System Overview 12
1.6 Organization 17
Chapter 2 Preliminary 18
2.1 Histogram of Oriented Gradients Feature 18
2.1.1 Construction of HOG Feature 19
2.1.2 Detection by HOG Classifier 20
2.2 Particle Filter 21
2.2.1 Tracking Problem 21
2.2.2 Sequential Importance Sampling 23
2.2.3 Sampling Importance Resampling 23
2.3 Hidden Markov Model 25
2.3.1 Observation Likelihood Estimation 27
2.3.2 Hidden States Decoding 29
2.3.3 Hidden Markov Model Learning 30
Chapter 3 Pose Estimation 32
3.1 Body Configuration 33
3.2 Key Pose Database 34
3.2.1 Key Pose Selection 34
3.2.2 Key Pose Database Construction 36
3.2.3 Key Pose Extraction 38
3.3 Body Parts Tracking 40
3.4 Likelihood Evaluation 42
3.4.1 Color Histogram 43
3.4.2 Edge Contour 45
3.4.3 Depth Matching 48
Chapter 4 Action Recognition 49
4.1 Dimensional Reduction 50
4.2 Action Database Construction 51
4.3 Action Spotting and Recognition 53
Chapter 5 Experiments 56
5.1 Experimental Setting 56
5.2 Data Collection 57
5.3 Experimental Result 60
5.3.1 Pose Estimation 60
5.3.2 Action Spotting 62
5.3.3 Action Recognition 63
5.4 Comparison 66
Chapter 6 Conclusion and Future Work 69
REFERENCE 71
dc.language.isoen
dc.subject姿勢辨認zh_TW
dc.subject動作辨識zh_TW
dc.subject粒子濾波器追蹤zh_TW
dc.subjectPose Estimationen
dc.subjectAction Recognitionen
dc.subjectParticle Filter Trackingen
dc.title利用三維影像結合骨架追蹤和特徵姿勢搜尋以進行即時動作辨識zh_TW
dc.titleOn-Line Human Action Recognition using 3D Sensor by Combining Joint Tracking and Key Pose Searchingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪一平(Yi-Ping Hung),莊永裕(Yung-Yu Chuang),李蔡彥(Tsai-Yen Li),蘇木春(Mu-Chun Su)
dc.subject.keyword動作辨識,粒子濾波器追蹤,姿勢辨認,zh_TW
dc.subject.keywordAction Recognition,Particle Filter Tracking,Pose Estimation,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2012-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved