Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64644
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林郁真(Yu-Chen Lin)
dc.contributor.authorHan-Fang Hsuehen
dc.contributor.author薛涵方zh_TW
dc.date.accessioned2021-06-16T22:56:52Z-
dc.date.available2014-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-10
dc.identifier.citationAndreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59. doi: 10.1016/s0920-5861(99)00102-9
Bader, H., & Hoigne, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15(4), 449-456. doi: 10.1016/0043-1354(81)90054-3
Buerge, I. J., Buser, H.-R., Poiger, T., & Muller, M. D. (2006). Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters†. Environmental Science & Technology, 40(23), 7242-7250. doi: 10.1021/es0609405
ChaoAn, C., Paul, W., Pierre, H., & Marisa, M. (2009). Monitoring of Trace-Level Pharmaceuticals and Personal Care Products in Salt River Project Waters Final Report
Collier, A. (2007). Pharmaceutical Contaminants in Potable Water: Potential Concerns for Pregnant Women and Children. EcoHealth, 4(2), 164-171. doi: 10.1007/s10393-007-0105-5
Dougherty, J. A., Swarzenski, P. W., Dinicola, R. S., & Reinhard, M. (2010). Occurrence Of Herbicides And Pharmaceutical And Personal Care Products In Surface Water And Groundwater Around Liberty Bay, Puget Sound, Washington. Journal of Environmental Quality, 39(4), 1173-1180.
Elliot, A. J., & McCracken, D. R. (1989). Effect of temperature on O⊘ reactions and equilibria: A pulse radiolysis study. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 33(1), 69-74. doi: 10.1016/1359-0197(89)90096-9
Ferrari, B. t., Paxeus, N., Giudice, R. L., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55(3), 359-370. doi: 10.1016/s0147-6513(02)00082-9
Glaze, W. H. (1986). Reaction Products of Ozone: A Review. Environmental Health Perspectives, 69(ArticleType: research-article / Full publication date: Nov., 1986 / Copyright c 1986 The National Institute of Environmental Health Sciences (NIEHS)), 151-157.
Glaze, W. H., Koga, M., & Cancilla, D. (1989). Ozonation byproducts. 2. Improvement of an aqueous-phase derivatization method for the detection of formaldehyde and other carbonyl compounds formed by the ozonation of drinking water. Environmental Science & Technology, 23(7), 838-847. doi: 10.1021/es00065a013
Han, Z., Bonnet, S. L., & van der Westhuizen, J. H. (2008). Photochemistry synthesis. Part 1: Syntheses of xanthine derivatives by photolysis of 1-(5′-oxohexyl)-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (pentoxifylline): an ambident chromophore. Tetrahedron, 64(11), 2619-2625. doi: 10.1016/j.tet.2008.01.007
Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1–2), 5-17. doi: 10.1016/s0378-4274(02)00041-3
Hoigne, J., & Bader, H. (1976). The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Research, 10(5), 377-386. doi: 10.1016/0043-1354(76)90055-5
Hoigne, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—I: Non-dissociating organic compounds. Water Research, 17(2), 173-183. doi: 10.1016/0043-1354(83)90098-2
Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.-G., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33(3), 370-375. doi: 10.1016/j.envint.2006.11.017
Lee Co Fau - Howe, K. J., Howe Kj Fau - Thomson, B. M., & Thomson, B. M. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. (1879-2448 (Electronic)).
Lin, A. Y.-C., & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry, 24(6), 1303-1309. doi: 10.1897/04-236r.1
Lin, A. Y.-C., Yu, T.-H., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167(1–3), 1163-1169. doi: 10.1016/j.jhazmat.2009.01.108
Mahnik, S. N., Lenz, K., Weissenbacher, N., Mader, R. M., & Fuerhacker, M. (2007). Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere, 66(1), 30-37. doi: 10.1016/j.chemosphere.2006.05.051
Mendonca, E., Picado, A., Paixao, S. M., Silva, L., Cunha, M. A., Leitao, S., . . . Brito, F. (2009). Ecotoxicity tests in the environmental analysis of wastewater treatment plants: Case study in Portugal. Journal of Hazardous Materials, 163(2–3), 665-670. doi: 10.1016/j.jhazmat.2008.07.012
Moldovan, Z., Schmutzer, G., Tusa, F., Calin, R., & Alder, A. C. (2007). An overview of pharmaceuticals and personal care products contamination along the river Somes watershed, Romania. Journal of Environmental Monitoring, 9(9), 986-993.
MUNTER, R. (2001). ADVANCED OXIDATION PROCESSES – CURRENT STATUS AND PROSPECTS. Proc. Estonian Acad. Sci. Chem., 50(2), 59-80.
Sacher, F., Ehmann, M., Gabriel, S., Graf, C., & Brauch, H.-J. (2008). Pharmaceutical residues in the river Rhine-results of a one-decade monitoring programme. Journal of Environmental Monitoring, 10(5), 664-670.
Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A., & Ovelleiro, J. L. (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Research, 32(9), 2721-2727. doi: 10.1016/s0043-1354(98)00030-x
Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1984). Formation of ozone in the reaction of hydroxyl with O3- and the decay of the ozonide ion radical at pH 10-13. The Journal of Physical Chemistry, 88(2), 269-273. doi: 10.1021/j150646a021
Sotelo, J. L., Beltran, F. J., Benitez, F. J., & Beltran-Heredia, J. (1989). Henry's law constant for the ozone-water system. Water Research, 23(10), 1239-1246. doi: 10.1016/0043-1354(89)90186-3
Sotelo, J. L., Beltran, F. J., Benitez, F. J., & Beltran-Heredia, J. (1987). Ozone decomposition in water: kinetic study. Industrial & Engineering Chemistry Research, 26(1), 39-43. doi: 10.1021/ie00061a008
Staehelin, J., & Hoigne, J. (1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science & Technology, 16(10), 676-681. doi: 10.1021/es00104a009
Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245-3260. doi: 10.1016/s0043-1354(98)00099-2
Ternes, T. A., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., & Teiser, B. (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 37(8), 1976-1982. doi: 10.1016/s0043-1354(02)00570-5
Valcarcel, Y., Gonzalez Alonso, S., Rodriguez-Gil, J. L., Gil, A., & Catala, M. (2011). Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere, 84(10), 1336-1348. doi: 10.1016/j.chemosphere.2011.05.014
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64644-
dc.description.abstract台灣污水處理廠大多為二級以下處理廠,傳統處理方法無法有效去除新興汙染物。因此,抗癌藥物及其他醫療用藥常在環境水體中被檢測出。製藥廠、汙水處理廠放流水及醫院為主要測出來源。臭氧處理為目前常用的高級處理方法,故本論文研究目標為利用臭氧去除三種抗癌藥物(5-fluorouracil、ifosfamide、cyclophosphamide)及血管擴張劑 (pentoxifylline。此四種化合物在初始濃度5ppm下皆可在30分鐘內去除60%,但反應速率受pH值和化合物結構有關。pH 值影響水中溶臭氧量和氫氧自由基比例,進而影響反應機制,化合物結構影響是否易於和臭氧反應。含不飽和鍵多的化合物在高pH下被氫氧自由基反應,在低pH下可和臭氧或自由基反應;沒有不飽和鍵的化合物在高pH下和氫氧自由基反應和在低pH下較難和臭氧反應。
Pentoxifylline和5-fluorouracil在5ppm起始濃度和三個不同的起始pH值(pH 5.6, pH9, pH11)下反應沒有顯著差別,皆在1分鐘內達到100%降解。Ifosfamide和 cyclophosphamide初始pH值為 5.6和9時有明顯卻類似的反應結果,ifosfamide在30分鐘的降解效率(pH 5.6為77%,pH 9為88%),分別比cyclophosphamide在兩個pH的降解程度高約10%。此結果說明,在pH 11時四種化合物都和反應力極強選擇性卻低的氫氧自由基反應而降解。結構中含有較多不飽和鍵的pentoxifylline和5-fluorouracil在pH 9和5.6下易和臭氧直接反應而完全降解,在較多臭氧而較少氫氧自由基的環境中,含有較少不飽和鍵的ifosfamide及 cyclophosphamide不易和臭氧反應,降解速率較低。而cyclophosphamide可能在結構上相較於ifosfamide有較大的立體障礙阻擋臭氧直接反應,使cyclophosphamide在初始pH為5.6和9的反應中降解效率比ifosfamide少約10%。
在鹼性條件及高初始濃度(20ppm)使用臭氧處理四個藥物皆可在10分鐘達到99%去除效率,但未完全礦化,測得總有機碳(TOC)的濃度改變量只減少約50%,表示仍有一半的副產物殘留於水中。生物急毒性測試顯示,對於ifosfamide 和 cyclophosphamide所產生的副產物急毒性隨時間有上升趨勢,顯示過長的臭氧接觸時間反而會將殘餘物轉換成有害物種。
zh_TW
dc.description.abstractThe wastewaters are typically secondary treated in the wastewater treatment plants (WWTP) in Taiwan; however, it is often found insufficient for removing emerging contaminants from the treated effluents. As a result, pharmaceuticals such as antineoplastic drugs and hemorrheologic agent are often detected in receiving natural waters. In addition, effluents from pharmaceutical production facilities and hospital wastewaters are also the main sources. Ozonation is an advanced treatment often used, so the thesis aims to use ozonation to remove three of the antineoplastic drugs and hemorrheologic agent. All of the compounds can be removed at least 60% with 5 ppm initial concentration within 30 minutes of reaction, but the reaction rate is affected by pH and the chemical structure. In the system, pH determines the ratio of dissolved ozone concentration and hydroxyl radicals, while chemical structure influences the reactivity of the target compounds with ozone.
pH 5.6, 9 and 11 were tested for all target compounds. Pentoxifylline and 5-fluorouracil were removed completely within 1minutes of ozonation and pH does not influence. However, ifosfamide and cyclophosphamide behaved differently; the removal rates were fastest at pH11, followed by pH 9 and 5.6. Ifosfamide and cyclophosphamide reached 100% removal within 3 minutes at pH 11 while at pH 9 and 5.6, they were only 78%-88% and 67-77% degraded after 30 minutes of ozonation.
With higher initial concentration (20ppm), four compounds can be degraded to 99% in 10 minutes at pH 11; however, the ozonation did not lead to mineralization. The total organic carbon were only 50% decreased, indicating that there were significant amount of byproducts formed and remained in the system. The MicrotoxR result showed that the toxicities increased with time for ifosfamide and cyclophosphamide ozonation, again indicating that ozone could transform the target compounds and byrproducts into more toxic during ozonation treatment process.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:56:52Z (GMT). No. of bitstreams: 1
ntu-101-R97521708-1.pdf: 1087704 bytes, checksum: b14a0b4f6dfc63de15b066295b38989b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 ......................................................I
Abstract ............................................... II
Content .............................................. VI
Figure list............................................... VIII
Table list............................................... IX
Chapter 1 Introduction.................................. 1
Problem statement ...................................... 3
Chapter 2 Literature review .................................................................................................... 4
2.1 Occurrence and Characteristics of target compound ......................................................... 4
2.2 Advanced oxidation process ............................................................................................ 9
2.3.1 Ozone and ozonation .............................................................................................. 10
2.3.2 Toxicity of the products .......................................................................................... 14
Chapter 3 Material and methods ......................................................................................... 17
Chapter 4 Experimental Results ........................................................................................... 28
4.1 Dissolved ozone ......................................................................................................... 28
4.2 pH effect of ozonation ................................................................................................ 29
4.2.1 pH effect of pentoxifylline ................................................................................... 31
4.2.2 pH effect of 5-fluorouracil: .................................................................................. 32
4.2.3 pH effect of ifosfamide ........................................................................................ 33
4.1.4 pH effect of cyclophosphamide ............................................................................ 35
4.3 Toxicity of the products .............................................................................................. 37
4.3.1 Toxicity and TOC of pentoxifylline and 5-fluorouracil ......................................... 38
4.3.2 Toxicity and TOC of ifosfamide .......................................................................... 40
4.3.3 Toxicity and TOC of cyclophosphamide .............................................................. 42

4.3.4 Toxicity of four target compounds combination ................................................... 43
4.4 Ozonation of cyclophosphamide with H2O2 ................................................................ 46
Chapter 5 Conclusion and suggestion ................................................................................... 47
5.1 Conclusion ................................................................................................................. 47
5.2 Suggestion .................................................................................................................. 49
Reference................................................................................................................................ 50
dc.language.isoen
dc.subject抗癌藥物zh_TW
dc.subject鹼性臭氧處理zh_TW
dc.subject己酮可可&#30897zh_TW
dc.subject臭氧處理zh_TW
dc.subject生物急毒性zh_TW
dc.subjectAntineoplastic drugsen
dc.subjectpentoxifyllineen
dc.subjectozonationen
dc.subjectalkaline ozonationen
dc.subjectacute toxicityen
dc.title臭氧處理抗癌藥物zh_TW
dc.titleOzonation of Antineoplastic Drugsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正芳(Cheng-Fang Lin),康佩群(Pui-Kwa Hong)
dc.subject.keyword抗癌藥物,己酮可可&#30897,臭氧處理,鹼性臭氧處理,生物急毒性,zh_TW
dc.subject.keywordAntineoplastic drugs,pentoxifylline,ozonation,alkaline ozonation,acute toxicity,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2012-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved