Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64639
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱風(Kai-Feng Chen)
dc.contributor.authorChun-Ting Linen
dc.contributor.author林俊廷zh_TW
dc.date.accessioned2021-06-16T22:56:49Z-
dc.date.available2020-03-03
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-26
dc.identifier.citation[1] “The LHC Schematic”. https://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/lhc_in_pictures.htm. Accessed: 2020-01-04.
[2] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak Interactions with Lepton-Hadron Symmetry”, Phys. Rev. D2 (1970) 1285–1292, doi:10.1103/PhysRevD.2.1285.
[3] Particle Data Group Collaboration, “Review of Particle Physics”, Phys. Rev. D 98 (Aug, 2018) 030001, doi:10.1103/PhysRevD.98.030001.
[4] J. A. Aguilar-Saavedra, “Top flavor-changing neutral interactions: Theoretical expectations and experimental detection”, Acta Phys. Polon. B35 (2004) 2695–2710, arXiv:hep-ph/0409342.
[5] CMS Collaboration, “Search for flavour changing neutral currents in top quark production and decays with three-lepton final state using the data collected at sqrt(s) = 13 TeV”,.
[6] ATLAS Collaboration, “Search for flavour-changing neutral current top-quark decays t ! qZ in proton-proton collisions at p s = 13 TeV with the ATLAS detector”, JHEP 07 (2018) 176, doi:10.1007/JHEP07(2018)176, arXiv:1803.09923.
[7] “Summary table of samples produced for the 1 Billion campaign, with 25ns bunch-crossing”.
https://twiki.cern.ch/twiki/bin/viewauth/CMS/SummaryTable1G25ns. Accessed: 2020-02-23.
[8] “Data Aggregation System (DAS)”. https://cms-gen-dev.cern.ch/xsdb/?columns=67108863¤tPage=0&pageSize=10. Accessed: 2020-02-23.
[9] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at p s = 13 TeV”, JINST 13 (2018), no. 06, P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
[10] CMS Collaboration, “Performance of Electron Reconstruction and Selection with the CMS Detector in Proton-Proton Collisions at √s = 8 TeV”, JINST 10 (2015), no. 06, P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
[11] “Introduction to Jet Energy Corrections at CMS”. https://twiki.cern.ch/twiki/bin/view/CMS/IntroToJEC. Accessed: 2020-02-23.
[12] CMS Collaboration, “Identification of b-Quark Jets with the CMS Experiment”, JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.74
[13] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018), no. 05, P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
[14] “Baseline muon selections for Run-II”. https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2. Accessed:2019-09-25.
[15] “OP Cross Sections Synchronization (Run2)”. https://twiki.cern.ch/twiki/bin/view/CMS/TTbarXSecSynchronization. Accessed:2019-09-25.
[16] “Cut Based Electron ID for Run 2”. https://twiki.cern.ch/twiki/bin/view/CMS/CutBasedElectronIdentificationRun2#Working_points_for_2016_data_for. Accessed: 2019-09-25.
[17] “Jet Energy Resolution”. https://twiki.cern.ch/twiki/bin/viewauth/CMS/JetResolution?fbclid=IwAR0-g3E1dpzn9n3JlIU_rbOl94YvDnrDelxrk17fHkoo8MW1MeJO6yGiazI.Accessed: 2019-09-26.
[18] CMS Collaboration, “Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at ps = 8 TeV”, JHEP 02 (2017)079, doi:10.1007/JHEP02(2017)079, arXiv:1610.04857.
[19] “Jet energy scale uncertainty sources”. https://twiki.cern.ch/twiki/bin/view/CMS/JECUncertaintySources. Accessed:2019-12-10.
[20] R. D. Ball, “Global Parton Distributions for the LHC Run II”, Nuovo Cim. C38 (2016), no. 4, 127, doi:10.1393/ncc/i2015-15127-9, arXiv:1507.07891.
[21] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur.Phys. J. C77 (2017), no. 10, 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
[22] “Higgs Combined Tool package”. https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideHiggsAnalysisCombinedLimit.Accessed: 2020-02-25.
[23] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0,10.1140/epjc/s10052-013-2501-z,arXiv:1007.1727. [Erratum: Eur. Phys. J.C73,2501(2013)].
[24] L. Lista, “Statistical Methods for Data Analysis in Particle Physics”, Lect. Notes Phys. 909 (2016) pp.1–172, doi:10.1007/978-3-319-20176-4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64639-
dc.description.abstract本研究旨在尋找頂夸克經由變味中性流衰變之事件,而此衰變事件在標準
模型中是被GIM 機制所高度抑制的。其中,頂夸克經此機制衰變至一個上夸克
(或魅夸克)與一個Z 玻色子的衰變比率被理論預測約為10−14數量級。然而,根
據許多標準模型的延伸理論預測,此衰變比率是可以提升至10−4數量級的。
本研究中將會著重分析頂夸克與反頂夸克對事件,其中一個頂夸克會衰變
至一個底夸克與一個W 玻色子,而另一頂夸克將會衰變至一個上夸克(或魅夸
克)與一個Z 玻色子,而W 和Z 玻色子都將會衰變成輕子對。本研究所分析的數
據為緊湊緲子線圈偵測器在2016 與2017 年所蒐集的質心能量為13 兆電子伏特
之質子質子對撞數據,其合計總通量為77.4fb−1。經由本研究所得知,無顯著
超量的期望訊號事件數,而經由計算可得頂夸克衰變至一個上夸克(或魅夸克)
與一個Z 玻色子的預期衰變比率在2016 年之數據中不超過0.027%(0.032%),
而在2017 之數據中不超過0.021%(0.025%)。
關鍵字詞: “變味中性流”, “頂夸克”, “緊湊緲子線圈偵測器”
zh_TW
dc.description.abstractThis analysis searches for the top quark decay through the flavor changing neutral
current (FCNC) process which is highly suppressed by the Glashow-Iliopoulos-
Maiani (GIM) mechanism in Standard Model (SM) and the branching fraction for a
top quark decaying into a charm or up quark and a Z boson is predicted to be of the
order 10−14. However, several extensions of the SM theories predict the branching
fraction of FCNC can be enhanced up to the order of 10−4 . The data collisions is collected
with the CMS detector in 2016 and 2017 from pp collision at the centre-of-mass
energy of 13 TeV and an integrated luminosity of 77.4 fb−1. This analysis focuses
on the top quark-antiquark events in which one of the top quark decays to a bottom
quark and a W boson and the other top quark decays to a light quark(u, c) and a Z
boson. Both the W and Z boson will decay into lepton pairs. No significant excess
is observed in the data. The expected upper limits are set on the branching fraction
of the top decays: Br(t −! uZ) < 0.027% and Br(t −! cZ) < 0.032% for 2016 and
Br(t −! uZ) < 0.021% and Br(t −! cZ) < 0.026% for 2017 at the 95% confidence
level.
Keyword : ”FCNC”, ”top quark”, ”CMS”
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:56:49Z (GMT). No. of bitstreams: 1
ntu-109-R05244005-1.pdf: 6587791 bytes, checksum: 558b4375ac7d0c0af1f0ccad3c0535ce (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents1 Introduction 1
1.1 The top quark in Standard Model . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Flavor Changing Neutral Current in top quark decay . . . . . . . . . . . . . 2
1.3 Overview of the analysis strategy . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Experimental Apparatus 5
2.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Compact Muon Solenoid Detector . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Magnetic Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Inner Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . . . . . . . . 8
2.2.4 Hadronic Calorimeter(HCAL) . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Muon Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Data and Monte Carlo Samples 12
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 MC Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Physical Object Reconstruction 16
4.1 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Muon Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Electron Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Missing transverse energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Jet Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 b-jet Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Event Selection 22
5.1 High Level Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Muon Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Electron Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Jet Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Correction to simulations 29
6.1 Pileup re-weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Leptons efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Jet energy resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 DeepCSV shape correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Kinematic distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Background Estimation 35
7.1 Event Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.1 Maximum-Likelihood Method . . . . . . . . . . . . . . . . . . . . . . 36
7.1.2 Extended Likelihood Function . . . . . . . . . . . . . . . . . . . . . . 37
7.2 WZ control region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 TT control region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Analysis Strategy 44
8.1 One Candidate per event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 MVA for Best Candidate Choice . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 MVA for Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9 Systematic Uncertainties 51
9.1 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.2 Pileup re-weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3 Trigger Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.4 Lepton Efficiency Scale Factors . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.5 b tagging Scale Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.6 Jet Energy Correction and Resolution . . . . . . . . . . . . . . . . . . . . . 52
9.7 Parton Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.8 Background Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10 Limit Calculation and Conclusion 56
10.1 Limit calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A Estimation of the trigger efficiency 58
B Transfer Ratio of Background Estimation 59
B.1 Transfer Factor in WZCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.2 Transfer Factor in TTCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C The MVA configuration 61
C.1 2016 tuZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
C.1.1 Best Combination Choice . . . . . . . . . . . . . . . . . . . . . . . . 61
C.1.2 Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
C.2 2017 tcZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.2.1 Best Combination Choice . . . . . . . . . . . . . . . . . . . . . . . . 66
C.2.2 Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C.3 2017 tuZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.3.1 Best Combination Choice . . . . . . . . . . . . . . . . . . . . . . . . 70
C.3.2 Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References 74
dc.language.isoen
dc.subject變味中性流zh_TW
dc.subject頂夸克zh_TW
dc.subject緊湊緲子線圈偵測器zh_TW
dc.subjectFCNCen
dc.subjecttop quarken
dc.subjectCMSen
dc.title於 CMS 實驗質心能量 13TeV 質子對撞資料中尋找頂夸克衰變到 Z 玻色子與輕夸克之變味中性流事件zh_TW
dc.titleSearch for Flavor Changing Neutral Currents Decays in t→qZ at centre-of-mass energy of 13 TeV in CMSen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張寶棣(Pao-Ti Chang),王名儒(Ming-Zu Wang),余欣珊(Shin-Shan Yu)
dc.subject.keyword變味中性流,頂夸克,緊湊緲子線圈偵測器,zh_TW
dc.subject.keywordFCNC,top quark,CMS,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202000610
dc.rights.note有償授權
dc.date.accepted2020-02-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
6.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved