Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘(Der-Ming Yeh)
dc.contributor.authorTzu-Jou Luen
dc.contributor.author呂慈柔zh_TW
dc.date.accessioned2021-06-16T22:56:44Z-
dc.date.available2014-08-16
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-10
dc.identifier.citation林曉君. 2003. 中斑香龍血樹莖幹與萬年竹插穗萌芽與發根之研究. 國立臺灣大 學園藝學研究所碩士論文.
Adebooye, O.C., M. Schmitz-Eiberger, C. Lankes, and G.J. Noga. 2010. Inhibition effects of sub-optimal root zone temperature on leaf bioactive components, photosystem II (PS II) and minerals uptake in Trichosanthes cucumeriana L. Cucurbitaceae. Acta Physio. Plant 32: 67-73.
Ahn, S.J., Y.J. Im, G.C. Chung, B.H. Cho,and S.R. Suh. 1999. Physiological responses of grafted roots affected by low root temperature. Scientia Hort. 81: 397-408.
Arai-Sanoh, Y., T. Ishimaru, A. Ohsumi, and M. Kondo. 2010. Effects of soil temperature on growth and root function in rice. Plant Prod. Sci. 13: 235-242.
Awal, M.A., T. Ikdea, and R. Itoh. 2003. The effect of soil temperature on source-sink economy in peanut (Arachis hypogaea). Environ. Expt. Bot. 50: 41-50.
Bassirirad, H. 2000. Kinetics of nutrient uptake by roots: Responses to global changes. New Phytol. 147: 155-169.
Behboudian, M.H., W.R. Graves, C.S. Walsh, and R.F. Korcak. 1994. Water relations, mineral nutrition, growth and 13C discrimination in two apple cultivars under daily episodes of high root-medium temperature. Plant Soil 162: 125-133.
Benzioni, A. and R.L. Dunstone. 1988. Effect of air and soil temperature on water balance of jojoba growing under controlled conditions. Physiol. Plant. 74: 107-112.
Bjӧrkmann, O and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489-504.
Blokhina, O. 2000. Anoxia and oxidative stress: Lipid peroxidation, antioxidant status and mitochondrial functions in plant. Academic dissertation. Helsinki.
Boersma, L. and K.A. Rykbost. 1975. Soil warming with power plant waste heat in greenhouses. HortScience 10: 28-30.
Bohnert, H.J. and E. Sheveleva 1998. Plant stress adaptations – making metabolism move. Curr. Opinion Plant Biol. 1: 267–274.
Bowen, G.D. 1991. Soil temperature, root growth, and plant function, p.309-330. In: Y. Waisel, A. Eshel, and U. Kafkafi (eds.). Plant roots-The hidden half. Marcel Dekker, N.Y.
Brown, W.W. and D.P. Ormrod. 1980. Response of the chrysanthemum to soil heating. Scientia Hort. 13: 67-75.
Chen, J., R.J. Henny, C.A. Robinson, T. Mellich, and R.D. Caldwell. 1999. Potted anthurium: An interior-flowering foliage plant. Proc. Fla. Hort. Soc. 112: 280-281.
Clark, R.B. and N. Reinhard. 1991. Effects of soil temperature on root and shoot growth traits and iron deficiency chlorosis in sorghums grown on a low iron calcareous soil. Plant and soil 130: 97-103.
Cooper, A.J. 1973. Root temperature and plant growth. Commonwealth Agr. Bur., Slough. UK.
Cruz, C., S.H. Lips, and M.A. Martins-Loucao. 1993. Effect of root temperature on carob growth: Nitrate versus ammonium nutrition. J. Plant Nutri. 16:1517-1530.
Davenport, J.R. and R.G. Stevens. 2006. High soil moisture and low soil temperature are associated with chlorosis occurrence in concord grape. HortScience 41: 418-422.
DeEll, J. R., O. van Kooten, R. K. Prange, and D. P. Murr. 1999. Application of chlorophyll fluorescence techniques in postharvest physiology. Hort. Rev. 23: 69-197.
DeLucia, E.H. 1986. Effects of low soil temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol. 2: 143-154.
DeLucia, E.H., S.A. Heckathorn, and T.A. Day. 1992. Effects of soil temperature on growth, biomass allocation and resource acquisition of Andropogon gerardii Vitman. New Phytol. 120: 543-549.
Dodd, I.C., J. He, C.G.N. Turnbull, S.K. Lee, and C. Critchley. 2000. The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J. Expt. Bot. 51: 239-248.
Du, Y.C. and S. Tachibana. 1994a. Effect of supraoptimal root temperature on the growth and root respiration and sugar content of cucumber plants. Scientia Hort. 58: 289-301.
Du, Y.C. and S. Tachibana. 1994b. Photosynthesis, photosynthate translocation and metabolism in cucumber roots held at supraoptimal temperature. J. Jpn. Soc. Hort. Sci. 63: 401-408.
Dufour, L. and V. Guerin. 2003. Growth, developmental features and flower production of Anthurium andreanum Lind. in tropical conditions. Scientia Hort. 98: 25-35.
Elibox, W. and P. Umaharan. 2008, Morphophysiological characteristics associated with vase life of cut flowers of Anthurium. HortScience 43: 825-831.
Epstein, E and A. J. Bloom. 2005. Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates. MA, USA.
Fedrizzi, M., S. Cacini, and G. Burchi. 2011. Root zone heating optimization in ornamental plant production. Acta Hort. 893: 389-396.
Flores-Nimedez, A.A. and P.H. Li. 1993. Amelioration of chilling injury in Phaseolus vulgaris L. by GLK-9803. J. Amer. Soc. Hort. Sci. 116: 825-830.
Gent, M.P.N. and H.Z. Enoch. 1983. Temperauture dependence and dark respiration: a mathematical model. Plant Physiol.71: 562-567.
Graves, W.R., R.J. Joly, and M.N. Dana.1991. Water use and growth of honey locust and tree of heaven at high root zone temperarure. HortScience 26: 1309-1312.
Griffith, L.P. 1998. Tropical foliage plants: A grower’s guide. Ball publishing, USA.
Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals in biology and medicine. Claredon Press, Oxford, UK.
Hamerlynck, E.P., T.E. Huxman, M.E. Loik, and S.D. Smith. 2000. Effects of extreme high temperature, drought and elevated CO2 on phototsynthesis of the Mojave desert evergreen shrub, Larrea tridentate. Plant Ecol. 148: 183-193.
He, Y., X Liu, and B Huang. 2005. Changes in protein content, protease activity, and amino acid content associated with heat injury in creeping bentgrass. J. Amer. Soc. Hort. Sci. 130: 842-847.
Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophy. 125: 189-198
Huang, B. and H. Gao. 2000. Growth and carbohydrate metabolism of creeping bentgrass in response to increasing temperatures. Crop Sci. 40: 1119-1124.
Hood, T.M. and H.A. Mills. 1994. Root-zone temperature affects nutrient uptake and growth of snapdradon. J. Plant Nutr. 17:279-291.
Hurewitz, J. and H.W. Janes. 1987. The relationship between the activity and the activation state of the RuBP cayboxylase and carbon exchange rate as affected by sink and developmental changes. Photosyn. Res. 12: 105-117.
Janes, H.W., R. McAvoy, M. Maletta, J. Simpkins, and D.R. Mears. 1981. The effect of warm root temperatures on growth of poinsettia. Acta Hort. 115: 245-258.
Kautsky, H. and A. Hirsch. 1931. Neue versuche zur kohlenstoffassimilation. Naturwissenschaften. 19: 964.
Kjaer, K.H., I.M. Hansson, K. Thorup-Kristensen, E. Rosenqvist, and J.M. Aaslyng. 2008. Root-zone heating at a night air temperature of 8 oC does not decrease starch accumulation in Chrysanthemum morifolium. J. Hort. Sci. Biotechnol. 83:381-387.
Klock, K.A., H.G. Taber, and W.R. Graves. 1997. Root respiration and phosphorus nutrition of tomato plants grown at 36 oC root-zone temperature. J. Amer. Hort. Sci. 122: 175-178.
Kramer, P.J. 1942. Species differences with respect to water absorption at low soil temperatures. J. Amer. Bot. 29: 828-832.
Kuroyanagi, T. and G.M. Paulsen. 1988. Mediation of high-temperature injury by roots and shoots during reproductive of wheat. Plant Cell Environ. 11: 517-523.
Laasch, H. 1987. Non-photochemical quenching of chlorophyll“a”fluorescence in isolated chloroplasts under conditions of stressed photosynthesis. Planta 171: 220-226.
Lambers, H. 1987. Growth, respiration, exudation, and symbiotic associations: The fate of carbon translocated to roots, p124-145. In: P.J. Gregory, J.V. Lake., and D.A. Rose(eds.). Root development and function. Cambridge Univ. Press, Cambridge, UK.
Lambers, H. and H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 23: 187-261.
Liu, X. and B. Huang. 2004. Changes in fatty acid composition and saturation in leaves and roots of creeping bentgrass exposed to high soil temperature. J. Amer. Soc. Hort. Sci. 129: 795-801.
Liu, X. and B. Huang. 2005. Root physiological factors involved in cool-season grass response to high soil temperature. Environ. Expt. Bot. 53: 233-245.
Liu, J. X. Xie, J.Du, J Sun, and X. Bai. 2008. Effects of simultabeous drought and heat stress on Kentucky bluegrass. Scientia Hort. 115: 190-195.
Lyons, E.M. J. Pote, M. DaCosta, and B. Huang. 2007. Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses. Environ. Expt. Bot. 59: 307–313.
Malcolm, P., P. Holford, Barry McGlasson, and I. Barchia. 2008. Leaf development, net assimilation and leaf nitrogen concentrations of five Prunus rootstocks in response to root temperature. Scientia Hort. 115: 285-291.
McMichael, B.L. and J.E. Quisenberry. 1993. The impact of the soil environment on the growth of root system. Environ. Expt. Bot. 33:53-61.
McMichael, B.L. and J.J. Burke. 1998. Soil temperature and root growth. J. Amer. Soc. Hort. Sci. 33: 947-950.
McWilliams, J.R., P.J. Kramer, and R.L. Musser. 1982. Temperature-induced water stress in chilling-sensitive plants. Austral. J. Plant Physiol. 9:343-352.
Menzel, C.M., D.W. Turner, and V.J.D.R. Simpson. 1994. Root shoot interactions in passionfruit (Passiflora sp.) under the influence of changing root volumes and soil temperature. J. Hort. Sci. 69:553-564.
Merritt, R.H. and H.C. Kohl, Jr. 1982. Effect of root temperature and photoperiod on growth and crop productivity efficiency of petunia. J. Amer. Soc. Hort. Sci. 107: 997-1000.
Mills, H.A. and J.B. Jones, Jr. 1996. Plant analysis handbook II. MicroMacro publishing, Inc., Athens, GA.
Monje, O., S. Anderson, and G.W. Stutte. 2007. The effects of elevated root zone temperature on the development ad carbon partitioning of spring wheat. J. Amer. Soc. Sci. 132: 178-184.
Moon, J.H., Y.K. Kang, and H.D. Suh. 2007. Effect of root-zone cooling on the growth and yield of cucumber at supraoptimal air temperature. Acta Hort. 761: 271-274.
Moss, G.I. 1984. Thee effects of root-zone warming on the yield and quality of roses grown in a hydroponic system. J. Hort. Sci. 59: 549-558.
Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.
Nada, K. L.X. He and S. Tachibana. 2003. Impaired photosynthesis in cucumber (Cucumis sativus L.) by high root-zone temperature involves ABA-induced stomatal closure and reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase activity. J. Jpn. Soc.Hort. Sci. 72: 504-510.
Nagasuga, K., M. Murai-Hatano, and T. Kuwagata. 2011. Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Prod. Sci. 14:22-29.
Nobel, P.S. and G.N. Geller. 1987. Temperature modelling of wet and dry desert soils. J. Ecol. 75: 247-258.
Paulsen, G.M. 1994. High temperature responses of crop plants, p. 365–389. In: K.J. Boote, J.M. Bennett, T.R. Sinclair, and G.M. Paulsen (eds.). Physiology and determination of crop yield. ASA, CSSA, and SSSA, Madison, USA.
Pavel, E.W. and E. Fereres. 1998. Low soil temperatures induce water dificits in olive (Olea europaea) trees. Physiol. Plant. 104: 525-532.
Pomper, K.W., D.R. Layne, S.C. Jones, and M.G. Kwantes. 2002. Growth enhancement on container-grown pawpaw seedlings as influences by media type, root-zone temperature, and fertilization regime. HortScience 37:329-333.
Rachimilevitch, S., B. Huang, and H. Lambers. 2006a. Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. New Phytol. 170: 479-490.
Rachimilevitch, S., B. Huang, and H. Lambers. 2006b. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J. Expt. Bot. 57: 623-631.
Ruter, J.M. and D.L. Ingram. 1992. High root-zone temperatures influence RuBisCO activity and pigment accumulation in leaves of ‘Rotundifolia’ holly. J. Amer. Soc. Hort. Sci. 117: 154-157.
Ryyppo, A., S. Iivonen, R. Rikala, M.L. Sutinen, and E. Vapaavuori. 1998. Response of Scots pine seedlings to low root zone temperature in spring. Physiol. Plantarum 102: 503-512.
Sasaki, O. 2002. Influence of high water temperature on leaf growth of rice plants (Oryza sativa L.). Jpn. J. Crop Sci. 71: 198-205.
Sattelmacher, B., H. Marschner, and R. Kuhne. 1990. Effects of temperature of the rooting zone on the growth and development of roots of potato (Solanum tuberosum). Ann. Bot. 65: 27-36.
Savicka, M., and N. Skute. 2010. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56: 26-33.
Samllie, R.M., S.E. Hetherington, R. Nott, G.R. Chaplin, and N.L. Wade. 1987. Applications of chlorophyll fluorescence to the postharvest physiology and storage of mango and banana fruit and the chilling tolerance of mango cultivars. Asean Food J. 3: 55-59.
Stout, R.G., M.L. Summers, T. Kerstetter, and T.R. McDermott. 1997. Heat- and acid-tolerance of a grass commonly found in geothermal areas within Yellowstone National Park. Plant Science 130: 1-9.
Taiz, Lincoln and E. Zeiger. 2006. Plant physiology. Sinauer Associates, Inc. USA.
Tahir, I.S.A., N. Nakata, T. Yamaguchi, J. Nakano, and A.M. Ali. 2008. Influence of high shoot and root temperatures on growth oh three wheat genotypes during early vegetative stage. J. Agr. Crop Sci. 194: 141-151.
Tan, L.P., J. He, and S.K. Lee. 2002. Effects of root-zone temperature on the root development and nutrient uptake of Lactuca sativa L. ‘Panama’ grown in an aeroponics system in the tropics. J. Plant Nutr. 25:297-314.
van Herk, M., M. van Koppen, S. Smeding, C.J. van der Elzen, N. van Rosmalen, J. van Dijk, A. Lont, and J. van Spingelen. 1998. Cultivation guide anthurium. Anthura B.V., Bleiswijk, The Netherlands.
Vogelezang, J.V.M. 1988. Effect of root-zone heating on growth, flowering and keeping quality of Saintpaulia ‘Empire’. Scientia Hort. 34: 101-113.
Vogelezang, J.V.M. 1991. Effect of root-zone and air temperature on growth, ornamental value and keepability of Ficus benjamina and Schefflera arboricola ‘Compacta’. Scientia Hort. 46: 301-313.
Vogelezang, J.V.M. 1992. Effect of root-zone temperature on flowering and growth of Spathiphyllum and Guzmania minor ‘Empire’. Scientia Hort. 49: 311-322.
Wai, K.S. and S.E. Newman. 1992. Air and root-temperatures infuence growth and flowering of snapdragons. HortScience 27:796-798.
Walker, D. 1985. Measurement of oxygen and chlorophyll. In: J. Coombs, D. Hall, S. Long, and J. Scurlock (eds), Techniques in bioproductivity and phototsynthesis, 2nd ed. Pergamon Press, Oxford, UK.
Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133: 754-759.
Wang, Z., Q. Xu, and B. Huang. 2004. Endogenous cytokinin levels and growth responses to extended photoperiods for creeping bentgrass under heat stress. Crop Sci. 44: 209-213.
Wardlaw, I.F. and L. Monsur. 1995. The respose of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. J. Plant Physol. 22: 391-397.
Xu, Q. and B. Huang. 2000a. Growth and physiological responses of creeping bentgrass to changes in air and soil temperature. Crop Sci. 40:1363-1368.
Xu, Q. and B. Huang. 2000b. Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop Sci. 40:1368-1374.
Xu, Q. and B. Huang. 2001. Lowering soil temperature improves creeping bentgrass growth under heat stress. Crop Sci. 41: 1878-1883.
Youngner, V.B. and F.G. Nudge. 1968. Growth and carbohydrate storage of three Poa pratenis L. strains as influenced by temperature. Crop Sci. 43: 266-271.
Zeroni, M. and J. Gale. 1982. The effect of root temperature on the development, growth and yield of ‘Sonia’ roses. Scientia Hort. 18: 177-184.
Zhang, Y.P., Y.X. Qiao, Y.L. Zhang, Y.H. Zhou, and J.Q. Yu. 2008. Effects of root temperature on leaf gas exchange and xylem sap abscisic acid concentration in six Cucurbitaceae species. Photosynthetica 46: 356-362.
Ziska, L.H. 1998. The influence of root zone temperature on photosynthesis acclimation to elevated carbon dioxide concentrations. Ann. Bot. 81: 717-721
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64630-
dc.description.abstract火鶴花 (Anthurium andraeanum Hort.) 為花燭屬 (Anthurium) 之多年生草本花卉,火鶴花是優良的居家及室內植物,在臺灣市場極具發展潛力。臺灣於冬季栽培火鶴花常遭遇氣溫過低導致植株生長及產量下降之問題,若提升氣溫則大幅增加生產成本;於夏季栽培火鶴花則面臨氣溫過高之不利環境。於冬季時提高根溫及夏季時降低根溫可能抵銷過高及過低氣溫之負面影響,本試驗期望瞭解火鶴花之合理根溫範圍,供火鶴花盆花栽培之參考。
冬春季平均氣溫19℃環境下,給予火鶴花盆花小苗18、21及24℃三種根溫處理,以21及24℃根溫處理者於處理5-24天後之光系統II最大效率顯著較根溫18 ℃處理者高。根溫18℃處理之葉綠素計讀值顯著較低,而提高根溫至24℃可顯著減少黃化/壞疽葉片數。處理120天後,根溫21℃處理者有最大之全株乾重、地上部乾重及根乾重。
冬季平均氣溫21℃時給予火鶴花盆花17、21、25、31及38℃五種根溫處理,根溫自25℃提高至32及38℃導致葉片數及葉面積顯著下降,同時亦造成淨光合作用速率及氣孔導度顯著下降,根溫38℃更造成葉片顯著黃化。根溫17 及21℃處理之全株乾重最高,而根溫38℃處理者最低。根溫17、21及25℃處理之地上部乾重差異不顯著,根溫自25℃提高至31及38℃造成地上部乾重顯著下降,根乾重之變化趨勢與全株乾重類似。
於春季平均氣溫19℃時給予火鶴花盆花20、24及32℃等三種根溫處理,處理後14天內,不同根溫處理間之光系統II最大效率差異並不顯著,且Fv/Fm均維持在0.7-0.8之間。根溫20及24℃處理間之淨光合作用速率無顯著差異,而根溫32℃處理造成淨光合作用速率顯著下降至接近0。根溫提高至32℃造成黃化/壞疽葉片數增加、葉綠素計讀值及葉面積顯著下降。根溫20及24℃處理間之地上部乾重無顯著差異,而根溫32℃造成全株乾重及根乾重顯著下降。根溫32℃處理造成地上部及根部之氮、磷及鉀濃度顯著下降,也導致全株之氮、磷、鉀、鈣及鎂等元素含量顯著下降。
於春夏季時將火鶴花盆花移入平均氣溫21℃之生長箱,並給予15、20、21、24及28℃等五種根溫處理。處理後13天間之光系統II最大效率於處理間無顯著差異。根溫自15℃提高至20℃可顯著提高淨光合作用速率及氣孔導度,而根溫自24 ℃提高至28℃導致淨光合作用速率及氣孔導度下降。根溫自15℃提高至20℃可顯著增加葉片數、葉面積及花朵數,但根溫提高至28℃導致葉片數及葉面積顯著下降。根溫處理92天後,根溫20℃處理者之全株乾重、地上部乾重及根乾重較15及28 ℃處理者高。根溫15及20℃根溫處理在第39-53天其根部丙二醛含量上升,而根溫21、24及28℃處理其根部丙二醛含量下降。根溫28℃處理者於處理39天時丙二醛含量顯著高於其他處理,處理間以20℃處理者較低。根溫15及20℃處理者之處理53天之丙二醛含量較處理39天時有增加之趨勢,處理間以根溫24℃處理者較低。
zh_TW
dc.description.abstractAnthurium andraeanum Hort. is a perennial herbaceous plant suitable for indoor plantscape. In Taiwan, Anthuriums are produced year-round under shade houses without temperature controlled. Low temperatures during winter result in slow growth and lower yield. Heating is not practical under shadehouses and increase production cost significantly. On the other hand, high temperatures during summer would reduce growth. In practical, adjusting root-zone temperature would be an alternative to enhance plant growth. This study was to determine the optimal temperature range of potted Anthurium ‘True Love’ in sand or hydroponics system.
During winter to spring at air temperatures of 13-29℃, young plants of Anthurium ‘True Love’ were treated with root temperatures 18 (unheated), 21 and 24℃ for 120 days. At 5 to 24 days after treatments, Fv/Fm value (maximum photosystemII efficiency) was higher in plants with 21 and 24℃than unheated treatment. Plants grown without heating had lower SPAD values. Bottom heating at 21 or 24℃ could reduce number of chlorotic and necrotic leaves. At 120 days after treatments, plants at 21℃ had higher plant dry weight than those at 18 and 24℃ treatments.
During winter at air temperature of 18-29℃, plants were grown with root temperatures of 17 (unheated), 21, 25, 31, and 38℃. Leaf number, leaf area, net photosynthesis rate, and stomatal conductance were lower when root temperature increased to 31-38℃. Leaf yellowing appeared in plants grown at 38℃. Whole plant dry weight was the highest when treated with 18 and 21 oC and the lowest in 38℃ treatment. Shoot dry weight decreased when root temperature increased from 25℃ to 31-38℃. Shoot dry weight did not differ in the 17-25℃ treatments.
In Expt. 3, plants were grown with root temperatures of 20, 24, and 32℃ at air temperatures of 13-27℃ during spring. Within 14 days after treatments, Fv/Fm value (0.7-0.8) did not differ between treatments. Root temperature of 32℃ significantly reduced net photosynthesis rate. Higher root temperature at 32℃ resulted in significant increase of chlorotic and necrotic leaves and decreases of SPAD value and leaf area. Shoot dry weights in plants of 20 and 24℃ treatment were higher than those grown at 32℃. Root temperature of 32℃ significantly reduced shoot and root nitrogen (N), phosphorus (P), and potassium (K) concentrations and whole plant content of N, P, K, calcium, and magnesium.
In Expt. 4, potted plants were grown in hydroponics, with air temperatures of 15-30℃ in a growth chamber during spring. Root temperatures of 15, 20 (control), 21, 24, and 28℃ were set. Within 13 days after treatment, Fv/Fm value did not significantly differ between treatments. Net photosynthesis rate (Pn), stomatal conductance (gs), leaf number, leaf area, and number of flowers increased when root temperature increased from 15 to 20℃. A further increase in root temperature to 28℃ caused significant decrease in Pn, gs, leaf number and leaf area. At 92 days after treatment, plants grown with root temperature 20℃ had higher whole plant, shoot, and root dry weights than those grown with 15 and 28℃. Treatments at 20 and 28℃ had the lowest and highest root malonyldialdehyde (MDA) content at 39 days after treatment, respectively. Plants grown with root temperatures of 15 and 20℃ had higher MDA content at 53 days after treatment (DAT) than at 39 DAT. Root temperature at 24℃ resulted in a lower MDA content at 53 DAT.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:56:44Z (GMT). No. of bitstreams: 1
ntu-101-R98628107-1.pdf: 5809623 bytes, checksum: 5d971e7248770eedaadf7057588ad45d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents表目錄 VI
圖目錄 VIII
中文摘要 X
Abstract XII
前言 (Introduction) 1
前人研究 (Literature Review) 4
一、火鶴花之形態與市場簡介 4
二、底部加溫系統之應用 4
三、根溫對植株生長及開花之影響 6
四、根溫對光合作用之影響 8
五、根溫對根系生長及養分吸收隻影響 10
六、溫度對丙二醛含量之影響 11
材料與方法 (Materials and Methods) 13
試驗一、以砂床控制根溫對火鶴花盆花小苗冬春季生長及光系統II之影響 13
試驗二、以砂床控制根溫對火鶴花盆花秋冬季生長及光合作用之影響 15
試驗三、水耕控制根溫對火鶴花盆花春季生長及礦物元素濃度之影響 16
試驗四、水耕控制低根溫對火鶴花盆花春夏季生長、光合作用及丙二醛含量之影響 18
結果 (Results) 21
試驗一、以砂床控制根溫對火鶴花盆花小苗冬春季生長及光系統II之影響 21
試驗二、以砂床控制根溫對火鶴花盆花秋冬季生長及光合作用之影響 29
試驗三、水耕控制根溫對火鶴花盆花春季生長及礦物元素濃度之影響 38
試驗四、水耕控制低根溫對火鶴花盆花春夏季生長、光合作用及丙二醛含量之影響 55
討論 (Discussion) 64
參考文獻 (References) 71
附錄 (Appendix) 79
dc.language.isozh-TW
dc.subject火鶴花zh_TW
dc.subject根溫zh_TW
dc.subject生長zh_TW
dc.subject光合作用zh_TW
dc.subject礦物營養zh_TW
dc.subjectgrowthen
dc.subjectphotosynthesisen
dc.subjectnutritionen
dc.subjectRoot-zone temperatureen
dc.subjectAnthurium andraeanumen
dc.title根溫對火鶴花盆花生長之影響zh_TW
dc.titleEffects of Root-zone Temperature on the Growth of Anthurium andraeanum Potted Plantsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林瑞松(Ruey-Song Lin),張育森(Yu-Sen Chang),黃秀真(Shiou-Jen Hwang)
dc.subject.keyword火鶴花,根溫,生長,光合作用,礦物營養,zh_TW
dc.subject.keywordAnthurium andraeanum,Root-zone temperature,growth,photosynthesis,nutrition,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2012-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved