請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64627
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳正宏(Cheng-Hong Chen) | |
dc.contributor.author | Shuan Chung | en |
dc.contributor.author | 鐘萱 | zh_TW |
dc.date.accessioned | 2021-06-16T22:56:42Z | - |
dc.date.available | 2021-02-20 | |
dc.date.copyright | 2021-02-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-05 | |
dc.identifier.citation | Cawood, P. A., Wang, Y., Xu, Y., and Zhao, G. (2013). Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology, 41(8), 903-906. Chappell, B. W., and White, A. J. R. (1974). Two contrasting granite types. Pacific geology, 8(2), 173-174. Chappell, B. W., and White, A. J. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4), 489-499. Charvet, J., Shu, L., Shi, Y., Guo, L., and Faure, M. (1996). The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences, 13(3-5), 223-235. Chen, C. H., Hsieh, P. S., Lee, C. Y., and Zhou, H. W. (2011). Two episodes of the Indosinian thermal event on the South China Block: constraints from LA-ICPMS U–Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Research, 19(4), 1008-1023. Chen, J., Foland, K. A. , Xing, F., Xu, X., and Zhou, T. (1991). Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China. Geology, 19(8), 815-818. Chen, J., and Jahn, B. M. (1998). Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1-2), 101-133. Chen, S., Niu, Y., Li, J., Sun, W., Zhang, Y., Hu, Y., and Shao, F. (2016). Syn-collisional adakitic granodiorites formed by fractional crystallization: Insights from their enclosed mafic magmatic enclaves (MMEs) in the Qumushan pluton, North Qilian Orogen at the northern margin of the Tibetan Plateau. Lithos, 248, 455-468. Chen, W., Zhang, W., Wang, R., Chu, Z., Xiao, R., Zhang, D., and Che, X. (2016). A study on the Dushiling tungsten-copper deposit in the Miao’ershan-Yuechengling area, Northern Guangxi, China: Implications for variations in the mineralization of multi-aged composite granite plutons. Science China Earth Sciences, 59(11), 2121-2141. Chen, Z. H., Xing, G. F., Guo, K. Y., Dong, Y. G., Chen, R., Zeng, Y., Li, L. M., He, Z. Y. and Zhao, L. (2009). Petrogenesis of the Pingshui keratophyre from Zhejiang: Zircon U–Pb age and Hf isotope constraints. Chinese Science Bulletin, 54, 610-617. Chu, Y., Faure, M., Lin, W., Wang, Q., and Ji, W. (2012a). Tectonics of the Middle Triassic intracontinental Xuefengshan Belt, South China: new insights from structural and chronological constraints on the basal décollement zone. International Journal of Earth Sciences, 101(8), 2125-2150. Chu, Y., Faure, M., Lin, W., and Wang, Q. (2012b). Early Mesozoic tectonics of the South China block: insights from the Xuefengshan intracontinental orogen. Journal of Asian Earth Sciences, 61, 199-220. Chu, Y., Lin, W., Faure, M., Wang, Q., and Ji, W. (2012c). Phanerozoic tectonothermal events of the Xuefengshan Belt, central South China: Implications from UPb age and LuHf determinations of granites. Lithos, 150, 243-255. Collins, W. J., Beams, S. D., White, A. J. R., and Chappell, B. W. (1982). Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2), 189-200. Condie, K. C. (2005). Earth as an evolving planetary system. Elsevier Academic Press, Amsterdam, 447 pp. Cox, K. G., Bell, J. D. and Pankhurst, R. J. (1979). The interpretation of igneous rocks. London, UK, George Allen and Unwin. 450 pp. Deng, P., Ren, J., Ling, H., Shen, W., Sun, L., Zhu, B., and Tan, Z. (2012). SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(13), 1542-1552. Ding, X., Sun, W. D., Chen, W. F., Chen, P. R., Sun, T., Sun, S. J., Lin, C. T. and Chen, F. K. (2015). Multiple Mesozoic magma processes formed the 240–185 Ma composite Weishan pluton, South China: evidence from geochronology, geochemistry, and Sr-Nd isotopes. International Geology Review, 57(9-10), 1189-1217. Eby, G. N. (1990). The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2), 115-134. Faure, M., Lin, W., Monié, P., Meffre, S. (2008). Palaeozoic collision between the North and South China blocks, Triassic intracontinental tectonics, and the problem of the ultrahigh-pressure metamorphism. Comptes Rendus Geoscience, 340(2-3), 139-150. Faure, M., Shu, L., Wang, B., Charvet, J., Choulet, F., and Monie, P. (2009). Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5), 360-368. Faure, M., Lin, W., Chu, Y., and Lepvrier, C. (2016). Triassic tectonics of the southern margin of the South China Block. Comptes Rendus Geoscience, 348(1), 5-14. Faure, M., Chen, Y., Feng, Z., Shu, L., and Xu, Z. (2017). Tectonics and geodynamics of South China: An introductory note. Journal of Asian Earth Sciences, 141, 1-6. Fromaget, J. (1941). L'Indochine francaise, sa structure geologique, ses roches, ses mines et leur relation possible avec la tectonique. Bulletin du service geologique de l'Indochine, 26, pp. 1-140 Guo, L. Z., G., Shi, Y. S. and Ma, R. S. (1980). The geotectonic framework and crustal evolution of South China. Scientific papers on geology for International Exchange, Geological Publishing House, Beijing (1980), pp. 109-116 Gao, P., Zheng, Y. F., Chen, Y. X., Zhao, Z. F., and Xia, X. P. (2018). Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China. Lithos, 300, 261-277. Gilder, S. A., Gill, J., Coe, R. S., Zhao, X., Liu, Z., Wang, G., Yuan, K., Liu, W., Kuang, G. and Wu, H. (1996). Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research: Solid Earth, 101(B7), 16137-16154. Guan, Y., Yuan, C., Sun, M., Wilde, S., Long, X., Huang, X., and Wang, Q. (2014). I-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China. Lithos, 206, 34-51. Harris, N. B., Pearce, J. A., and Tindle, A. G. (1986). Geochemical characteristics of collision-zone magmatism. London, Geological Society, Special Publications, 19(1), 67-81. Haynes, S. J. (1988). Structural reconnaissance of the Jiangnan geanticline: a suspect terrane of compressional tectonic character. HowellD.G. Wiley (Ed.), Proc. 4th Int. Tectonostratigraphic Terrane Conf., U.S. Geo. Survey, Menlo Park, California (1988), pp. 31-33 Healy, B., Collins, W. J., and Richards, S. W. (2004). A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos, 78(1-2), 197-216. Hsü, K. J., Shu, S., Jiliang, L., Haihong, C., Haipo, P., and Sengor, A. M. C. (1988). Mesozoic overthrust tectonics in south China. Geology, 16(5), 418-421. Hsü, K. J., Li, J., Chen, H., Wang, Q., Sun, S., and Şengör, A. M. C. (1990). Tectonics of South China: key to understanding West Pacific geology. Tectonophysics, 183(1-4), 9-39. Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305. Ji, W., Lin, W., Faure, M., Chen, Y., Chu, Y., and Xue, Z. (2017). Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan province (middle Yangtze region), South China: Geodynamic implications for the Paleo-Pacific subduction. Journal of Asian Earth Sciences, 141, 174-193. Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D., Liu, X., Zhang, L., Ji, S., and Trinh, P. T. (1995). The Ailao Shan-Red river shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics, 251(1-4), 3-84. Li, J., Zhang, Y., Zhao, G., Johnston, S. T., Dong, S., Koppers, A., Miggins, D. P., Sun, H., Wang, W. and Xin, Y. (2017). New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia. Tectonics, 36(5), 819-853. Li, W. X., Li, X. H., Li, Z. X., and Lou, F. S. (2008). Obduction-type granites within the NE Jiangxi Ophiolite: implications for the final amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3), 288-301. Li, X. H., Wang, Y. X., Zhao, Z. H., and Chen, D. F. (1998). The SHRIMP U–Pb zircon geochronology of Paleoproterozoic plagioclase-amphibolite in the Zhejiang-Fujian area. Journal of Geochemistry, 27(4), 327-334. Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F., and Yang, Y. H. (2009). Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2), 117-128. Li, X. H., Li, Z. X., and Li, W. X. (2014). Detrital zircon U–Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: a synthesis. Gondwana Research, 25(3), 1202-1215. Li, Z. X. (1998). Tectonic history of the major east Asian lithospheric blocks since the mid‐Proterozoic—a synthesis. Mantle dynamics and plate interactions in East Asia, 27, 221-243. Li, Z. X., Wartho, J. A., Occhipinti, S., Zhang, C. L., Li, X. H., Wang, J., and Bao, C. (2007). Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: new mica 40Ar/39Ar dating and SHRIMP U–Pb detrital zircon provenance constraints. Precambrian Research, 159(1-2), 79-94. Li, Z. X., and Li, X. H. (2007). Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2), 179-182. Liu, S., Peng, S., Kusky, T., Polat, A., and Han, Q. (2018). Origin and tectonic implications of an Early Paleozoic (460–440 Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China. Lithos, 322, 104-128. Gao, L., Shi, Y., Lu, H., Ma, R., Dong, H., and Yang, S. (1989). The pre-Devonian tectonic patterns and evolution of South China. Journal of Southeast Asian Earth Sciences, 3(1-4), 87-93. Loiselle, M. C., and Wones, D. R. (1979). Characteristics and origin of anorogenic granites. In Geological Society of America Abstracts with Programs, Vol. 11, p. 468. Maniar, P. D., and Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635-643. Mattauer, M., Matte, P., Malavieille, J., Tapponnier, P., Maluski, H., Xu, Z.Q., Lu, Y.L., and Tang, Y.Q. (1985). Tectonics of the Qinling belt: build-up and evolution of eastern Asia. Nature, 317(6037), 496-500. Pearce, J. A., Harris, N. B., and Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4), 956-983. Peccerillo, A., and Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1), 63-81. Peng, S., Jin, Z., Liu, Y., Fu, J., He, L., Cai, M., and Wang, Y. (2006). Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai Orogenic Belt, western Guangdong Province, China. Journal of China University of Geosciences, 17(1), 1-12. Qiu, L., Yan, D. P., Zhou, M. F., Arndt, N. T., Tang, S. L., and Qi, L. (2014). Geochronology and geochemistry of the Late Triassic Longtan pluton in South China: termination of the crustal melting and Indosinian orogenesis. International Journal of Earth Sciences, 103(3), 649-666. Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4), 247-263. Rowley, D. B., Ziegler, A. M., and Gyou, N.(1989). Comment and Reply on' Mesozoic overthrust tectonics in south China'. Geology, 17(4), 384-387. Shi, W., Zhang, Y., Dong, S., Hu, J., Wiesinger, M., Ratschbacher, L., Jonckheere, R., Li, J.H., Tian, M., Chen, H., Wu, G.L., Ma, L.C., and Li, H.L. (2012). Intra-continental Dabashan orocline, southwestern Qinling, central China. Journal of Asian Earth Sciences, 46, 20-38. Shu, L., and Charvet, J. (1996). Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: with HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics, 267(1-4), 291-302. Shu, L. S., Faure, M., Yu, J. H., and Jahn, B. M. (2011). Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4), 263-276. Shu, L. S., Jahn, B. M., Charvet, J., Santosh, M., Wang, B., Xu, X. S., and Jiang, S. Y. (2014). Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): evidence from stratigraphic, structural, geochemical and geochronological investigations. American Journal of Science, 314(1), 154-186. Shu, L.S., Zhou, G.Q., Shi, Y.S. and Yin, J. (1994). Study of the high pressure metamorphic blueschist and its Late Proterozoic age in the eastern Jiangnan belt. Chinese Science Bulletin, 14, 1200-1204. Song, M., Shu, L., Santosh, M., and Li, J. (2015). Late Early Paleozoic and Early Mesozoic intracontinental orogeny in the South China Craton: geochronological and geochemical evidence. Lithos, 232, 360-374. Stepanov, A. S., Hermann, J. (2013). Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”. Geology, 41(3), 303-306. Su, S., Qin, K., Li, G., Pang, X., Zou, X., and Zhao, C. (2019). Geochronology and geochemistry of Early Silurian felsic volcanic rocks in the Dabaoshan ore district, South China: Implications for the petrogenesis and geodynamic setting. Geological Journal, 54(6), 3286-3303. Sun, S. S., and McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345. Wang, J., and Li, Z. X. (2003). History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122(1-4), 141-158. Wang, K. X., Chen, W. F., Chen, P. R., Ling, H. F., and Huang, H. (2015). Petrogenesis and geodynamic implications of the Xiema and Ziyunshan plutons in Hunan Province, South China. Journal of Asian Earth Sciences, 111, 919-935. Wang, Y., Fan, W., Guo, F., Peng, T., and Li, C. (2003). Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. International Geology Review, 45(3), 263-286. Wang, Y., Fan, W., Liang, X., Peng, T., and Shi, Y. (2005). SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications. Chinese Science Bulletin, 50(13), 1395-1403. Wang, Y., Fan, W., Sun, M., Liang, X., Zhang, Y., and Peng, T. (2007). Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan Province. Lithos, 96(3-4), 475-502. Wang, Y., Zhang, A., Fan, W., Zhao, G., Zhang, G., Zhang, Y., Zhang, F. and Li, S. (2011). Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U–Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi–Yunkai Domains. Lithos, 127(1-2), 239-260. Wang, Y., Wu, C., Zhang, A., Fan, W., Zhang, Y., Zhang, Y., Peng, T. and Yin, C. (2012). Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U–Pb geochronology and metamorphism of amphibolites and granulites. Lithos, 150, 227-242. Wang, Y., Fan, W., Zhang, G., and Zhang, Y. (2013a). Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Research, 23(4), 1273-1305. Wang, Y., Zhang, A., Fan, W., Zhang, Y., and Zhang, Y. (2013b). Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: geochronological and geochemical evidence. Lithos, 160, 37-54. White, A. J. R., and Chappell, B. W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoir, 159(12), 21-34. White, A. J. R., Chappell, B. W., and Cleary, J. R. (1974). Geologic setting and emplacement of some Australian Palaeozoic batholiths and implications for intrusive mechanisms: Pacific Geology, v. 8. Xiao, W., and He, H. (2005). Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China). Geological Society of America Bulletin, 117(7-8), 945-961. Xu, B., Guo, L. Z., and Shi, Y. S. (1992). Proterozoic terranes and multiphase collision orogens in anhui-Zhejiang-Jiangxi areas. Geol. Publishing House, Beijing, 112p. Xu, W., and Xu, X. (2015). Early Paleozoic intracontinental felsic magmatism in the South China Block: Petrogenesis and geodynamics. Lithos, 234, 79-92. Xu, W., and Xu, X. (2017). An early Paleozoic monzonorite–granite suite in the South China Block: implications for the intracontinental felsic magmatism. Mineralogy and Petrology, 111(5), 709-728. Xu, W., Xu, X., Zeng, G., (2017) Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block. Lithos 286-287, 388-395. Yao, W. H., Li, Z. X., Li, W. X., Wang, X. C., Li, X. H., and Yang, J. H. (2012). Post-kinematic lithospheric delamination of the Wuyi–Yunkai orogen in South China: evidence from ca. 435 Ma high-Mg basalts. Lithos, 154, 115-129. Yao, W. H., Li, Z. X., Li, W. X., Li, X. H., and Yang, J. H. (2014). From Rodinia to Gondwanaland: a tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China. American Journal of Science, 314(1), 278-313. Ye, M. F., Li, X. H., Li, W. X., Liu, Y., and Li, Z. X. (2007). SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12(1-2), 144-156. Yu, Y., Huang, X. L., He, P. L., and Li, J. (2016). I-type granitoids associated with the early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China. Lithos, 248, 353-365. Zhang, F., Wang, Y., Zhang, A., Fan, W., Zhang, Y., and Zi, J. (2012). Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos, 150, 188-208. Zhang, L., Chen, Z., Li, X., Li, S., Santosh, M., and Huang, G. (2018). Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization. Lithos, 308, 19-33. Zhang, W., Wang, R., Lei, Z., Hua, R., Zhu, J., Lu, J., Xie, L., Che, X., Zhang, R., Yao, Y. and Chen, J. (2011). Zircon U-Pb dating confirms existence of a Caledonian scheelite-bearing aplitic vein in the Penggongmiao granite batholith, South Hunan. Chinese Science Bulletin, 56(19), 2031-2036. Zhang, X. S., Xu, X. S., Xia, Y., and Liu, L. (2017). Early Paleozoic intracontinental orogeny and post-orogenic extension in the South China Block: Insights from volcanic rocks. Journal of Asian Earth Sciences, 141, 24-42. Zhao, G., and Cawood, P. A. (2012). Precambrian geology of China. Precambrian Research, 222, 13-54. Zhao, K. D., Jiang, S. Y., Sun, T., Chen, W. F., Ling, H. F., and Chen, P. R. (2013). Zircon U–Pb dating, trace element and Sr–Nd–Hf isotope geochemistry of Paleozoic granites in the Miao’ershan–Yuechengling batholith, South China: Implication for petrogenesis and tectonic–magmatic evolution. Journal of Asian Earth Sciences, 74, 244-264. Zhong, Y., Ma, C., Zhang, C., Wang, S., She, Z., Liu, L., and Xu, H. (2013). Zircon U–Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic–felsic Complex at the southeastern margin of the Yangtze Block. Journal of Asian Earth Sciences, 74, 11-24. Zhou, X. M., Li, W. X. (2000). Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4), 269-287. 丁興,孫衛東,汪方躍,陳林麗,李秋立及陳福坤 (2012)。湖南溈山岩體多期雲母的 Rb-Sr 同位素年齡和礦物化學組成及其成岩成礦指示意義。岩石學報,28(12),3823-3840。 于玉帥,戴平雲,張旺馳,謝飛,郭福生及張霖原 (2019)。湘東丫江橋岩體時代與成因:來自 LA-ICP-MS 鋯石 U-Pb 年代學,地球化學和 Lu-Hf 同位素制約。地質學報,93(2),394-413。 朱秋紅 (2005)。龜山島高鎂安山岩之岩漿成因。臺灣大學地質科學研究所學位論文,1-99。 伍光英,馬鐵球,馮豔芳,閆全人,劉富國及柏道遠 (2008)。南嶺萬洋山加里東期花崗岩地質地球化學特徵及其成因。中國地質,35(4),608-617。 李建華,張嶽橋,董樹文,馬之力及李勇 (2015)。湘東宏夏橋和板杉鋪岩體 LA-MC-ICPMS 鋯石 U-Pb 年齡及地質意義。地球學報,36(2),187-196。 李勇,張嶽橋,蘇金寶,李建華及董樹文 (2015)。湖南大義山,塔山岩體鋯石 U-Pb 年齡及其構造意義。地球學報,36(3),302-311。 李彬,鄧新,李銀敏及柏道遠 (2019)。湘東丫江橋岩體同位素年代學,地球化學及其構造意義。華南地質與礦產,35(4),410-422。 李寄嵎,蔡榮浩,何孝恆,楊燦堯,鍾孫霖及陳正宏 (1997)。應用 X 光螢光分析儀從事岩石樣品之定量分析 (I) 主要元素。中國地質年會八十六年年會,第 418-420 頁。 李寄嵎 (2018)。華南地區花崗岩類岩體樣本資料庫(未發表資料)。臺灣大學地質科學系暨研究所 李獻華 (1993)。萬洋山—諸廣山加里東期花崗岩的形成機制—微量元素和稀土元素地球化學證據。地球化學,1,35-44。 何苗,劉慶,侯泉林,孫金鳳,張吉衡,伍式崇及朱浩鋒 (2018)。湘東鄧阜仙花崗岩成因及對成礦的制約:鋯石/錫石 U-Pb 年代學,鋯石 Hf-O 同位素及全岩地球化學特徵。岩石學報,34(3),637-655。 林俞青 (2011)。亞美尼亞及高加索造山帶火成岩的地球化學特性與岩石成因。國立臺灣大學理學院地質科學研究所學位論文,1-124。 季文兵,路遠發,付建明,程順波及盧友月 (2016)。南嶺地區萬洋山岩體鋯石LA-ICP-MS U-Pb年齡和地球化學特徵及其構造意義。地質論評,62(5),1329-1343。 邱瀚毅 (2013)。利用鋯石鈾鉛定年及鉿同位素研究伊朗新特提斯隱沒帶岩漿演化與札格洛斯造山作用。國立臺灣大學地質科學研究所學位論文,1-211。 周新民,陳培榮及徐夕生 (2007)。南嶺地區晚中生代花崗岩成因與岩石圈動力學演化。北京:科學出版社,1-580。 易立文,馬昌前,王連訓,賴中信,李湘玉,楊亞楠,吳飛及胡晏如 (2014)。華南晚奧陶世次火山岩的發現:早古生代與俯衝有關的英安岩? 地球科學,23(6),637-653。 柏道遠,黃建中,馬鐵球及王先輝 (2006)。湘東南志留紀彭公廟花崗岩體的地質地球化學特徵及其構造環境。現代地質,20(1),130。 柏道遠,鐘響,賈朋遠,熊雄及黃文義 (2014)。湘中印支期關帝廟岩體地球化學特徵及成因。沉積與特提斯地質,34(4),92-104。 柏道遠,鐘響,賈朋遠,熊雄及黃文義 (2014)。南嶺西段加里東期苗兒山岩體鋯石 SHRIMPU-Pb 年齡, 地球化學特徵及其構造意義。岩石礦物學雜誌, 33(3),407-423。 柏道遠,陳必河,鐘響,賈朋遠及熊雄 (2014)。湘西南印支期五團岩體鋯石 SHRIMP U-Pb 年齡,地球化學特徵及形成背景。中國地質,41(6),2002-2018。 姚振凱及朱蓉斌 (1991)。萬洋山-諸廣山花崗岩帶鈾成礦的區域地質背景。湖南地質,10(1),9-16。 孫立強,淩洪飛,沈渭洲,黃國龍及譚正中 (2010)。南嶺地區油山岩體和坪田岩體形成年齡及其地質意義。高校地質學報,16(2),186-197。 孫濤 (2006) 新編華南花崗岩分佈圖及其說明。地質通報,25(3),332-335。 張旗,潘國強,李承東,金惟俊及賈秀勤 (2007)。花崗岩構造環境問題:關於花崗岩研究的思考之三。岩石學報,23(11),2683-2698。 郭愛民,陳必河,陳劍鋒,周超,司程山及鄭正福 (2017)。南嶺諸廣山北體複式花崗岩鋯石 SHRIMP U-Pb 年齡及多期岩漿活動。中國地質,44(4),781-792。 陳相豔,仝來喜,張傳林,朱清波及李亞楠 (2015)。浙江龍遊石榴石角閃岩 (退變榴輝岩):華夏加里東期碰撞造山事件的新證據。科學通報,60(13),1207-1217。 湖南省地質礦產廳區域地質調查所 (1995)。湖南省花崗岩類岩體地質圖。湖南地質,增刊第8號,附件 程順波,付建明,陳希清,馬麗豔及盧友月 (2012)。桂東北海洋山岩體鋯石 SHRIMP U-Pb 定年和地球化學研究。華南地質與礦產,28(2),132-140。 蔡楊,陸建軍,馬東升,黃卉及張懷峰 (2013)。湖南鄧阜仙印支晚期二雲母花崗岩年代學,地球化學特徵及其意義。岩石學報,29(12),4215-4231。 湖南省地質調查院 (2017)。中國區域地質誌:湖南誌。北京:地質出版社 虞航,蔡煜琦,李偉林,黃國龍,龐雅慶,江衛兵及張闖 (2017)。諸廣山南部高坪地區細粒花崗岩 LA-ICP-MS 鋯石 U-Pb 年齡及其地質意義。地質論評,63(3),781-792。 魯玉龍,彭建堂,陽傑華,胡阿香,李玉坤,譚輝躍及肖秋越 (2017)。湘中紫雲山岩體的成因:鋯石 U-Pb 年代學,元素地球化學及 Hf-O 同位素制約。岩石學報,33(6),1705-1728。 蔡楊,馬東升,陸建軍,黃卉,章榮清及屈文俊 (2012)。湖南鄧阜仙鎢礦輝鉬礦錸-鋨同位素定年及硫同位素地球化學研究。岩石學報,28(12),3798-3808。 劉凱,毛建仁,趙希林,葉海敏及胡青 (2014)。湖南紫雲山岩體的地質地球化學特徵及其成因意義。地質學報,88(2),208-227。 劉偉,曾佐勳,陳德立,賀赤誠,莫皓然,曾志方,魏運許及徐大良 (2014)。湖南陽明山複式花崗岩的岩石成因:鋯石 U-Pb 年代學,地球化學及 Hf 同位素約束。岩石學報,30(5),1485-1504。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64627 | - |
dc.description.abstract | 在華南陸塊中部(武夷-雲開造山帶以西、雪峰山造山帶以東)廣泛出露早古生代與早中生代侵入岩,岩性多為中性及酸性花崗岩類。華南陸塊雖由西北的揚子地塊與東南的華夏地塊所拼合而成,然而聚合時間與機制仍存在不同見解,特別在華南中部湖南一帶的拼合位置迄今未明。本研究針對本區兩時代花崗岩類分析鋯石鈾-鉛年齡及全岩地球化學,以討論早古生代與早中生代侵入岩的岩石成因,並據以檢視可能的揚子與華夏地塊交界及其拼合史。 本區早古生代花崗岩類岩體侵入時代可分為兩期。第一期之年齡範圍在444~423 Ma,峰值為437 Ma,形成華夏地塊的萬洋山、北諸廣山、彭公廟、丰頂山以及揚子地塊的板杉鋪、宏廈橋等大量I型花崗岩岩體。另也形成局部S型花崗岩於上述萬洋山、彭公廟兩岩體以及介於S型-I型間的過渡型花崗岩於揚子地塊的苗兒山、越城嶺、海洋山等花崗閃長岩及花崗岩岩體。第二期之年齡範圍在418~400 Ma,峰值為403 Ma,形成少量I型花崗岩疊加於丰頂山岩體北側、彭公廟岩體北側、北諸廣岩體與板杉鋪岩體;並有少量仍具過渡型特徵花崗岩疊加於前期苗兒山、越城嶺岩體。兩期I型花崗岩在各岩體中主要岩漿演化機制為由花崗閃長岩至花崗岩質岩漿的結晶分化,不同岩體之間則有地殼混染的程度差異。 本區早中生代花崗岩類岩體侵入時代亦分為兩期。第一期之年齡範圍為232~217 Ma,峰值為222 Ma,不僅產生I型花崗岩,包含揚子地塊的溈山、紫雲山、關帝廟等花崗岩體及白馬山、歇馬等花崗閃長岩岩體,而且產生大量S型(含過渡型)花崗岩,包含揚子地塊的塔山、陽明山、五峰仙花崗岩岩體,以及華夏地塊的丫江橋、鄧阜仙、小溪洞、南諸廣等花崗岩岩體。第二期之年齡範圍為214~206 Ma,峰值為212 Ma,再次形成I型花崗岩質岩漿疊加於前期產生的溈山、紫雲山、白馬山、歇馬岩體,並形成過渡型岩漿侵入或疊加於早古生代的苗兒山、越城嶺岩體。各岩體中的化學組成主要受到結晶分化所控制,不同岩體之間則有地殼混染的程度差異。 揚子與華夏地塊的交界一般認為是江山-紹興斷裂帶的延伸連接至郴州-臨武斷裂帶,早古生代I型花崗岩廣泛分布於其兩側。地體構造投圖顯示兩期I型花崗岩均屬於火山弧環境,第一期S型花崗岩屬於後碰撞環境,第二期過渡型花崗岩則屬於板內環境。根據此結果,推論早古生代時期揚子地塊與華夏地塊已拼合,可能受到類似地函熱柱的湧昇熱源影響形成陸內造山,在兩個地塊上均形成帶有地函來源特徵的I型花崗岩及上部地殼熔融而成的S型及過渡型花崗岩。 早中生代第一期的I型與S型花崗岩岩體呈區域性分布,但分布界線並未沿著江山-紹興斷裂帶的延伸及郴州-臨武斷裂帶,而是跨越揚子地塊呈現東北東-西南西走向,地體構造投圖顯示西北的I型花崗岩屬於火山弧構造環境,東南的S型花崗岩則屬於同碰撞至板內環境。早中生代第二期,I型與S型花崗岩岩體均分布於安化-羅城斷裂帶東側,北邊的I型延續第一期帶有火山弧構造環境特徵,南邊的S型則延續早古生代第二期,仍具有板內構造環境特徵。早中生代花崗岩類S型與I型的分布,顯示花崗岩的形成並非如過去認知受控於西南邊印支造山運動(中南半島與華南陸塊碰撞)或北邊華北陸塊向華南碰撞拼合,而可能是受到華南西南外海縫合構造的遠程效應所致。 | zh_TW |
dc.description.abstract | There are widespread Early Paleozoic and Early Mesozoic intrusives, ranging from granodiorite to silicic granite, in the South China Block (SCB). As the SCB is composed of the Yangtze and Cathaysia sub-blocks, however, different views on the amalgamation age and mechanism, and even the boundary of these two sub-blocks are under debate. In this study, the zircon U-Pb dating and whole-rock geochemistry of granitoids occurring at these two eras in the area bounded by the west of Wuyi-Yunkai orogen and the east of Xuefengshan orogen (central SCB) are analyzed to better understand the petrogenesis and interaction of these two sub-blocks. Two stages of Early Paleozoic granitoids in central SCB can be divided. For the first stage, Wanyangshan, North Zhuguangshan, Penggongmiao, Fengdinshan granitic plutons in the Cathaysia sub-block emplaced at 449-431 Ma, Miaoershan, Yuechengling, Haiyangshan granodioritic to granitic plutons and Banshanpu, Hongxiaqiao granitic plutons in the Yangtze sub-block emplaced at 435-424 Ma. The whole-rock geochemical results, e.g. the ANK versus ACNK diagrams, show that most plutons in the Cathaysia and Yangtze sub-blocks belong to I-type granitoids, while Wanyangshan and Penggongmiao plutons in the Cathaysia sub-block are S-type granitoids, Miaoershan, Yuechengling and Haiyangshan plutons are transitional-type between S- and I-type. For the second stage, northern Penggongmiao and Fengdinshan plutons in the Cathaysia sub-block had emplaced with granites again at 405-402 Ma. However, Banshanpu, Miaoershan, Yuechengling plutons in the Yangtze sub-block were newly formed at 418-400 Ma. Except Miaoershan and Yuechengling plutons are transitional-type, other plutons in the second stage are I-type granitoids. Fractional crystallization is the major mechanism responsible for the evolution of granodioritic to granitic magmas. Also two stages of Early Mesozoic granitoids are recognized in central SCB. For the first stage, Baimashan, Xiema granodioritic plutons and Weishan, Ziyunshan, Guandimiao granitic plutons in the Yangtze sub-block emplaced at 243-234 Ma. On the other hand, Tashan, Yangmingshan, Wufengxian granitic plutons in the Yangtze and Xiaoxidong alkali granitic pluton, Yajiangqiao, Dengfuxian, South Zhuguangshan granitic plutons in the Cathaysia sub-blocks emplaced at 239-223 Ma. The whole-rock geochemical results show that plutons in the former group are I-type granitoids, whereas the latter group are S-type granitoids. For the second stage, Baimashan, Weishan, Xiema, Ziyunshan and Miaoershan, Yuechengling plutons in the Yangtze sub-block emplaced again at 222-208 Ma. Except Miaoershan, Yuechengling plutons are transitional-type, other granitoids in the second stage are I-type. The Early Paleozoic first stage I-type granitoids are widespread in two sides of the boundary connecting the extension of Jiangshan-Shaoxing Fault and Chenzhou-Linwu Fault. Tectonic discrimination diagrams show an arc-continent collision environment of I-type granitoids, but a post-collisional environment of S-type granitoids for the first stage magmatism. For the second stage, tectonic discrimination diagrams show a volcanic environment of I-type granitoids. An intracontinental plume-like upwelling producing the two pulses of granitoids in the central SCB is the favorite model. This implies that Yangtze and Cathaysia sub-blocks might have been amalgamated already before the early Paleozoic. In the Early Mesozoic, an ENE-WSW trending I-S deviding line of first stage rocks in the Yangtze sub-blocks is constructed, which is different from the extension of Jiangshan-Shaoxing Fault Zone and Chenzhou-Linwu Fault. For the second stage, both I-type and S-type granitoids are closed to the Anhua-Luocheng Fault. Discrimination diagrams for the tectonic interpretation shows a syn-collision environment at southeast, while an arc-continent environment at northwest. Although generation of the Early Mesozoic granitoids in this area were commonly related to the Indosinian orogeny (collision between Indochina and South China Blocks), coeval I- and S-type granitoids were suggested to reflect an intracratonic orogeny likely affected by the hypothetic Triassic suture along offshore of the SCB as advocated by Faure et al., 2016. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T22:56:42Z (GMT). No. of bitstreams: 1 U0001-0202202116512000.pdf: 21414917 bytes, checksum: 7ed4ee462724a849d324d5d518d714e3 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 iii ABSTRACT v 目錄 vii 圖目 ix 表目 xii 第1章 緒論 1 1.1 前言 1 1.2 地質背景 2 1.3 研究動機及目的 3 第2章 研究方法 5 2.1 研究區域及採樣位置 5 2.1.1 湖南-江西-廣東交界:萬洋山、南北諸廣山等岩體 6 2.1.2 湖南-廣西交界:苗兒山、越城嶺等岩體 7 2.1.3 湖南省內:溈山、白馬山等岩體 7 2.2 顯微鏡岩象觀察 12 2.3 鋯石鈾-鉛定年 12 2.4 全岩主量元素含量分析 13 2.5 全岩微量元素含量分析 14 2.6 全岩鍶-釹同位素組成分析 14 第3章 分析結果 16 3.1 野外及顯微鏡岩象觀察 16 3.2 鋯石鈾-鉛年齡 21 3.2.1 早古生代鋯石鈾-鉛定年結果 22 3.2.2 早中生代鋯石鈾-鉛定年結果 29 3.3 全岩地球化學 38 3.3.1 早古生代岩體 38 3.3.2 早中生代岩體 50 3.4 全岩鍶-釹同位素組成 62 第4章 討論 65 4.1 早古生代兩期I型與S型花崗岩類之時空分布 65 4.2 早古生代花崗岩類岩漿特性與岩石成因 67 4.3 早古生代花崗岩體形成與區域構造關聯 73 4.4 早中生代兩期I型與S型花崗岩類時空分布 75 4.5 早中生代花崗岩類岩漿特性與岩石成因 77 4.6 早中生代花崗岩體形成與區域構造關聯 81 第5章 結論 84 引用文獻 86 附錄 1. 早古生代鋯石鈾-鉛定年結果 1 附錄 2. 早中生代鋯石鈾-鉛定年結果 16 附錄 3. 早古生代岩體文獻地球化學資料 31 附錄 4. 早中生代岩體文獻地球化學資料 49 附錄 5. 早古生代岩體文獻鍶-釹同位素資料 67 附錄 6. 早中生代岩體文獻鍶-釹同位素資料 70 | |
dc.language.iso | zh-TW | |
dc.title | 華南陸塊中部早古生代及早中生代花崗岩類年代及地球化學研究 | zh_TW |
dc.title | Age and geochemical studies of Early Paleozoic and Early Mesozoic granitoids from central South China Block | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝佩珊(Pei-Shan Hsieh),賴昱銘(Yu-Ming Lai),朱美妃(Mei-Fei Chu) | |
dc.subject.keyword | 華南陸塊,早古生代花崗岩,早中生代花崗岩,鋯石鈾-鉛定年,全岩 地球化學, | zh_TW |
dc.subject.keyword | South China block,Early Paleozoic granitoids,Early Mesozoic granitoids,Zircon U–Pb geochronology,Whole-rock elemental geochemistry, | en |
dc.relation.page | 169 | |
dc.identifier.doi | 10.6342/NTU202100403 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-08 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0202202116512000.pdf 目前未授權公開取用 | 20.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。