請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64623
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏宏宇 | |
dc.contributor.author | Ching-Chun Kuan | en |
dc.contributor.author | 管慶鈞 | zh_TW |
dc.date.accessioned | 2021-06-16T17:58:48Z | - |
dc.date.available | 2012-08-15 | |
dc.date.copyright | 2012-08-15 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-10 | |
dc.identifier.citation | [1] V. Raghunathan , A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design Considerations
for Solar Energy Harvesting Wireless Embedded Systems. In Fourth In- ternational Symposium on Information Processing in Sensor Networks., pages 457– 462, Apr. 2005. [2] S. Sudevalayam and P. Kulkarni. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys Tutorials, 13(3):443–461, third quarter 2011. [3] W.K.G. Seah, Z.A. Eu, and H.P. Tan. Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) - Survey and challenges. In Wireless Com- munication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology., pages 1–5, May 2009. [4] M. Tacca, P. Monti, and A. Fumagalli. Cooperative and Reliable ARQ Protocols for Energy HarvestingWireless Sensor Nodes. IEEE Transactions on Wireless Commu- nications, 6(7):2519–2529, July 2007. [5] J. Lei, R. Yates, and L. Greenstein. A Generic Model for Optimizing Single-hop Transmission Policy of Replenishable Sensors. IEEE Transactions onWireless Com- munications, 8(2):547–551, Feb. 2009. [6] B. Medepally, N.B. Mehta, and C.R. Murthy. Implications of Energy Profile and Storage on Energy Harvesting Sensor Link Performance. In IEEE Global Telecom- munications Conference., pages 1–6, Dec. 2009. [7] A. Seyedi and B. Sikdar. Modeling and Analysis of Energy Harvesting Nodes in Wireless Sensor Networks. In 46th Annual Allerton Conference on Communication, Control, and Computing, pages 67–71, Sep. 2008. [8] A. Seyedi and B. Sikdar. Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting. IEEE Transactions on Communications, 58(7):2116–2126, July 2010. [9] C.K. Ho, P.D. Khoa, and P.C. Ming. Markovian Models for Harvested Energy in Wireless Communications. In IEEE International Conference on Communication Systems, pages 311–315, Nov. 2010. [10] D. Niyato, E. Hossain, and A. Fallahi. Sleep and Wakeup Strategies in Solar- PoweredWireless Sensor/Mesh Networks: Performance Analysis and Optimization. IEEE Transactions on Mobile Computing, 6(2):221–236, Feb. 2007. [11] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power Management in Energy Harvesting Sensor Networks. ACM Transactions on Embedded Computing Systems,, 6(4), Sep. 2007. [12] Z.A. Eu, H.P. Tan, and W.K.G. Seah. Design and Performance Analysis of MAC Schemes for Wireless Sensor Networks Powered by Ambient Energy Harvesting. Ad Hoc Networks, 9(3):300–323, May 2011. [13] C.E. Jones, K.M. Sivalingam, P. Agrawal, and J.C. Chen. A Survey of Energy Efficient Network Protocols for Wireless Networks. Wireless Networks, 7(4):343– 358, Sep. 2001. [14] L. Rizzo. Effective Erasure Codes for Reliable Computer Communication Protocols. ACM SIGCOMM Computer Communication Review, 27(2):24–36, Apr. 1997. [15] P.J.M. Hayinga. Energy Efficiency of Error Correction on Wireless Systems. In IEEE Wireless Communications and Networking Conference, volume 2, pages 616– 620, 1999. [16] J.W. Byers, M. Luby, and M. Mitzenmacher. A Digital Fountain Approach to Asynchronous Reliable Multicast. IEEE Journal on Selected Areas in Communications, 20(8):1528–1540, Oct. 2002. [17] S.W. Yuk, M.G. Kang, B.C. Shin, and D.H. Cho. An Adaptive Redundancy Control Method for Erasure-Code-Based Real-Time Data Transmission Over the Internet. IEEE Transactions on Multimedia, 3(3):366–374, Sep. 2001. [18] W.K. Lin, D.M. Chiu, and Y.B. Lee. Erasure Code Replication Revisited. In Fourth International Conference on Peer-to-Peer Computing, pages 90–97, Aug. 2004. [19] H. Wen, C. Lin, F. Ren, Y. Yue, and X. Huang. Retransmission or Redundancy: Transmission Reliability in Wireless Sensor Networks. In IEEE Internatonal Con- ference on Mobile Adhoc and Sensor Systems., pages 1–7, Oct. 2007. [20] D. Nguyen, T. Tran, T. Nguyen, and B. Bose. Wireless Broadcast Using Network Coding. IEEE Transactions on Vehicular Technology, 58(2):914–925, Feb. 2009. [21] A. Fujimura, S.Y. Oh, and M. Gerla. Network Coding vs. Erasure Coding: Reliable Multicast in Ad Hoc Networks. In IEEE Military Communications Conference., pages 1–7, Nov. 2008. [22] J.E.Wieselthier, G.D. Nguyen, and A. Ephremides. On the Construction of Energy- Efficient Broadcast and Multicast Trees inWireless Networks. In Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies.(INFOCOM 2000), volume 2, pages 585–594, 2000. [23] M. ˇ Cagalj, J.P. Hubaux, and C. Enz. Minimum-Energy Broadcast in All-wireless Networks: NP-completeness and Distribution Issues. In Proceedings of the 8th annual international conference on Mobile computing and networking, pages 172–182, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64623 | - |
dc.description.abstract | 在本篇論文中,我們探討在能量擷取網路環境中的可靠性廣播機制。透過能量擷取裝置,通訊設備可以從環境中獲取能量,例如太陽能,動能,熱能等。在傳統的網路中,資料在傳輸過程中可能因為傳輸媒介的可靠度不佳,或外在因素的干擾而遭到破壞,造成傳輸失敗。而在能量擷取網路中, 可靠傳輸將面臨另一項挑戰:當電池的能量用盡時,通訊設備將無法接收或傳輸資料。綜合以上考量,我們採用糾刪編碼(Erasure Coding)來達成可靠性的廣播傳輸,此外,提出能量感知接收機制及提前終止接收機制來提升能量的使用效率。同時,我們也提出了數學模型來分析效能。從理論結果發現,調整不同的廣播週期,傳輸量和可靠性之間存在取捨關係。針對不同種類的資料,我們提出了三種廣播方針來決定廣播週期。第一是傳輸量優先方針, 目的是最大化整體的傳輸量。第二是可靠性優先方針,目的是確保每個接收器能成功接受。最後是折衷方針,也就是兼顧傳輸量和可靠性的傳輸方法。最後,我們利用程式模擬來驗證數學分析,我們發現分析結果和模擬結果相符合,並且也可以看出使用能量感知接收及提前終止接收機制的效能明顯優於單純使用糾刪編碼的傳輸。 | zh_TW |
dc.description.abstract | In this paper, we study the reliable broadcast transmission in energy harvesting networks. It is assumed that the base station has some broadcast data to multiple energy harvesting devices. The transmission errors may occur by noise or other impairments during transmission. The technique of forward error correction (FEC) is widely used for controlling errors. In additional to transmission error, the other main challenge posed to a reliable transmission in energy harvesting networks: energy deficiency. It refers that the energy harvesting node cannot work when its battery is exhausted. To deal with this problem, we propose the energy-aware receiving scheme and early-termination scheme. Combining the above issues, we take both transmission error and energy deficiency into account and propose system design and the theoretical analysis for reliable broadcast transmissions. We also investigate the trade-off between reliability and throughput in different broadcast period. For different requirements, we propose the reliability-first policy, throughput-first policy and eclectic policy to determine the broadcast period. The simulation results are in line with the theoretical values. It also indicates that proposed schemes can dramatically improve the performance of broadcast transmission. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:58:48Z (GMT). No. of bitstreams: 1 ntu-101-R99942065-1.pdf: 1206197 bytes, checksum: 5b4c78769b3810139138c40885afe931 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Master Thesis Certification by Oral Defense Committee i
Chinese Abstract ii Abstract iii Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Energy Harvesting Sensor Networks . . . . . . . . . . . . . . . . . . . . 3 2.2 Reliable Broadcast Transmission . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 3 System Model 7 3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Energy Harvesting Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Energy Consumption and Energy Storage . . . . . . . . . . . . . . . . . 9 Chapter 4 Reliable Broadcast Transmission Scheme 11 4.1 Challenges of Reliable Transmission in Energy Harvesting Network . . . 11 4.2 Transmission with Erasure Coding . . . . . . . . . . . . . . . . . . . . . 12 4.3 Energy-Aware Receiving Scheme . . . . . . . . . . . . . . . . . . . . . 15 4.4 Early-Termination Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 5 Performance Metrics 17 5.1 Successful Reception Probability . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 Energy Cost Per Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 6 Analytical Model 19 Chapter 7 Broadcast Polices 25 7.1 Reliability-First Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.2 Throughput-First Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.3 Eclectic Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 8 Simulation Results and Discussions 31 8.1 Performance Comparisons in Different Schemes . . . . . . . . . . . . . . 31 8.2 The Effect of Energy Threshold . . . . . . . . . . . . . . . . . . . . . . 34 8.3 The Effect of Energy Capacity . . . . . . . . . . . . . . . . . . . . . . . 35 8.4 The Effect of Energy Harvesting Model . . . . . . . . . . . . . . . . . . 36 8.5 The Broadcast Policies in Homogeneous Devices . . . . . . . . . . . . . 38 8.6 The Broadcast Policies in Heterogeneous Devices . . . . . . . . . . . . . 39 Chapter 9 Conclusions 42 Bibliography 44 | |
dc.language.iso | en | |
dc.title | 在能量擷取網路中可靠性廣播傳輸機制之設計與分析 | zh_TW |
dc.title | Design and Analysis for Reliable Broadcast Transmission in Energy Harvesting Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪樂文,吳文中,周俊廷 | |
dc.subject.keyword | 能量擷取,可靠性廣播,糾刪編碼, | zh_TW |
dc.subject.keyword | energy harvesting,reliable broadcast,erasure coding, | en |
dc.relation.page | 47 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。