Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游景雲(Gene J.-Y. You)
dc.contributor.authorYen-Chen Mouen
dc.contributor.author牟彥蓁zh_TW
dc.date.accessioned2021-06-16T17:56:45Z-
dc.date.available2025-03-05
dc.date.copyright2020-03-05
dc.date.issued2020
dc.date.submitted2020-02-26
dc.identifier.citation[1] 吳仁友 (1997年)。擬似三維海岸水動力計算模式之發展。國立臺灣大學土木工程學研究所學位論文。
[2] 曹之獻 (2005年)。 擬似三維感潮河口水流及質量傳輸計算。國立臺灣大學土木工程學研究所學位論文。
[3] Alcrudo, F., and Garcia-Navarro, P. (1993). A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. International Journal for Numerical Methods in Fluids, 16(6), 489-505. doi:https://doi.org/10.1002/fld.1650160604
[4] Aris, R., and Taylor, G. I. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 235(1200), 67-77. doi: https://doi.org/10.1098/rspa.1956.0065
[5] Armi, L., and Farmer, D. M. (1986). Maximal two-layer exchange through a contraction with barotropic net flow. Journal of Fluid Mechanics, 164, 27-51. doi: https://doi.org/10.1017/S0022112086002458
[6] Audusse, E., Bristeau, M. O., Pelanti, M., and Sainte-Marie, J. (2011). Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9), 3453-3478. doi:https://doi.org/10.1016/j.jcp.2011.01.042
[7] Bates, C. C. (1953). Rational theory of delta formation. Aapg Bulletin, 37(9), 2119-2162. doi:ttps://doi.org/10.1306/5CEADD76-16BB-11D7-8645000102C1865D
[8] Begnudelli, L., and Sanders, B. F. (2006). Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. Journal of Hydraulic Engineering, 132(4), 371-384.doi:https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371)
[9] Begnudelli, L., Sanders, B. F., and Bradford, S. F. (2008). Adaptive Godunov-based model for flood simulation. Journal of Hydraulic Engineering, 134(6), 714-725.doi:https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(714
[10] Benjankar, R., Tonina, D., and McKean, J. (2015). One-dimensional and two-dimensional hydrodynamic modeling derived flow properties: impacts on aquatic habitat quality predictions. Earth Surface Processes and Landforms, 40(3), 340-356. doi:https://doi.org/10.1002/esp.3637
[11] Benkhaldoun, F., and Seaïd, M. (2010). A simple finite volume method for the shallow water equations. Journal of Computational and Applied Mathematics, 234(1), 58-72. doi:https://doi.org/10.1016/j.cam.2009.12.005
[12] Bermúdez, A., Dervieux, A., Desideri, J.-A., and Vázquez, M. E. (1998). Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Computer methods in applied mechanics and engineering, 155(1-2), 49-72. doi:https://doi.org/10.1016/S0045-7825(97)85625-3
[13] Bianchi T., A. M., ; Cai W.-J. (2013). Biogeochemical Dynamics at Major River-Coastal Interfaces. Cambridge: Cambridge University Press. doi:https://doi.org/10.1017/CBO9781139136853
[14] Blevins, Robert D. (1984). Applied fluid dynamics handbook. New York, Van Nostrand Reinhold Co., 1984, 568 p.
[15] Bouchut, F., and Zeitlin, V. (2010). A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems-series B - DISCRETE CONTIN DYN SYS-SER B, 13, 739-758. doi:http://dx.doi.org/10.3934/dcdsb.2010.13.739
[16] Brufau, P., Vázquez‐Cendón, M., and García‐Navarro, P. (2002). A numerical model for the flooding and drying of irregular domains. International Journal for Numerical Methods in Fluids, 39(3), 247-275. doi:http://dx.doi.org/10.1002/fld.285
[17] Cai, W.-J. (2010). Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration? Annual Review of Marine Science, 3(1), 123-145. doi:http://dx.doi.org/10.1146/annurev-marine-120709-142723
[18] Canuel, E. A., Cammer, S. S., McIntosh, H. A., and Pondell, C. R. (2012). Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface. Annual Review of Earth and Planetary Sciences, 40(1), 685-711. doi:http://dx.doi.org/10.1146/annurev-earth-042711-105511
[19] Casulli, V. (1990). Semi-implicit finite difference methods for the two-dimensional shallow water equations. Journal of Computational Physics, 86(1), 56-74. doi:https://doi.org/10.1016/0021-9991(90)90091-E
[20] Casulli, V., and Cheng, R. T. (1992). Semi‐implicit finite difference methods for three‐dimensional shallow water flow. International Journal for Numerical Methods in Fluids, 15(6), 629-648. doi: https://doi.org/10.1016/0021-9991(90)90091-E
[21] Casulli, V., and Walters, R. A. (2000). An unstructured grid, three‐dimensional model based on the shallow water equations. International Journal for Numerical Methods in Fluids, 32(3), 331-348. doi:https://doi.org/10.1002/(SICI)1097-0363(20000215)32:3<331::AID-FLD941>3.0.CO;2-C
[22] Chaudhry, M. H. (2007). Open-channel flow. Springer Science and Business Media.
[23] Chen, C.-T. A., Liu, J. T., and Tsuang, B.-J. (2004). Island-based catchment—The Taiwan example. Regional Environmental Change, 4(1), 39-48. doi:https://doi.org/10.1007/s10113-003-0058-3
[24] Coleman, J. M., and Wright, L. D. (1971). Analysis of Major River Systems and Their Deltas: Procedures and Rationale: With Two Examples. LOUISIANA STATE UNIV BATON ROUGE COASTAL STUDIES INST.
[25] Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische annalen, 100(1), 32-74. doi:https://doi.org/10.1007/BF01448839
[26] Csanady, G. T. (1978). The Arrested Topographic Wave. Journal of Physical Oceanography, 8(1), 47-62. doi:https://doi.org/10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2
[27] Davidson, M., and Pun, K. (1999). Weakly advected jets in cross-flow. Journal of Hydraulic Engineering, 125(1), 47-58. doi:https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(47)
[28] Drønen, N., and Deigaard, R. (2007). Quasi-three-dimensional modelling of the morphology of longshore bars. Coastal Engineering, 54(3), 197-215. doi:https://doi.org/10.1016/j.coastaleng.2006.08.011
[29] Eisma, D. (1986). Flocculation and de-flocculation of suspended matter in estuaries. Netherlands Journal of Sea Research, 20(2), 183-199. doi:https://doi.org/10.1016/0077-7579(86)90041-4
[30] Elder, J. W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5(4), 544-560. doi:https://doi.org/10.1017/S0022112059000374
[31] Fan, L.-N. (1967). Turbulent buoyant jets into stratified or flowing ambient fluids. doi:https://doi.org/ 10.7907/Z99K485X
[32] Fennema, R. J., and Hanif Chaudhry, M. (1987). Simulation of one-dimensional dam-break flows. Journal of Hydraulic Research, 25(1), 41-51. doi:https://doi.org/10.1080/00221688709499287
[33] Fennema Robert, J., and Chaudhry, M. H. (1990). Explicit Methods for 2‐D Transient Free Surface Flows. Journal of Hydraulic Engineering, 116(8), 1013-1034. doi:https://doi.org/10.1061/(ASCE)0733-9429(1990)116:8(1013)
[34] Ferziger, J. H., and Perić, M. (2002). Computational methods for fluid dynamics (Vol. 3): Springer.
[35] Fischer, H. (1972). Mass transport mechanisms in partially stratified estuaries. Journal of Fluid Mechanics, 53(4), 671-687. doi:https://doi.org/10.1017/S0022112072000412
[36] Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N. H. (1979a). Chapter 7 - Mixing in Estuaries. In H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks (Eds.), Mixing in Inland and Coastal Waters (pp. 229-278). San Diego: Academic Press.
[37] Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N. H. (1979b). Chapter 9 - Turbulent Jets and Plumes. In H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks (Eds.), Mixing in Inland and Coastal Waters (pp. 315-389). San Diego: Academic Press.
[38] Fong, D. A., and Geyer, W. R. (2002). The Alongshore Transport of Freshwater in a Surface-Trapped River Plume. Journal of Physical Oceanography, 32(3), 957-972. doi:https://doi.org/10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2
[39] Görtler, v. H. (1942). Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Näherungsansatzes. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 22(5), 244-254. doi:https://doi.org/10.1002/zamm.19420220503
[40] Garvine, R. W. (1996). Buoyant discharge on the inner continental shelf: A frontal model. Journal of Marine Research, 54(1), 1-33. doi:https://doi.org/10.1357/0022240963213457
[41] GESAMP. (1994). Anthropogenic influences on sediment discharge to the coastal zone and environmental consequences. GESAMP Reports and Studies, No. 52, 67.
[42] Geyer, W., Woodruff, J., and Traykovski, P. (2001). Sediment Transport and Trapping in the Hudson River Estuary. Estuaries, 24, 670-679. doi:https://doi.org/10.2307/1352875
[43] Glaister, P. (1987). Difference schemes for the shallow water equations. Numerical Analysis Report 87-89.
[44] Godunov, S. K. (1959). A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik, 89(3), 271-306.
[45] Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes. Mathematics of computation of the American Mathematical Society, 67(221), 73-85.
[46] Guibai, L., and Gregory, J. (1991). Flocculation and sedimentation of high-turbidity waters. Water Research, 25(9), 1137-1143. doi:https://doi.org/10.1016/0043-1354(91)90207-7
[47] Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3), 357-393. doi:https://doi.org/10.1016/0021-9991(83)90136-5
[48] Harten, A., Lax, P. D., and Leer, B. v. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM review, 25(1), 35-61.
[49] Hetland, R., and Macdonald, D. (2008). Spreading in the near-field Merrimack River plume. Ocean Modelling, 21, 12-21. doi: https://doi.org/10.1016/j.ocemod.2007.11.001
[50] Hetland, R. D. (2005). Relating River Plume Structure to Vertical Mixing. Journal of Physical Oceanography, 35(9), 1667-1688. doi: https://doi.org/10.1175/JPO2774.1
[51] Hetland, R. D. (2010). The effects of mixing and spreading on density in near-field river plumes. Dynamics of Atmospheres and Oceans, 49(1), 37-53. doi:https://doi.org/10.1016/j.dynatmoce.2008.11.003
[52] Hetland, R. D., and MacDonald, D. G. (2008). Spreading in the near-field Merrimack River plume. Ocean Modelling, 21(1-2), 12-21. doi:https://doi.org/10.1016/j.ocemod.2007.11.001
[53] Horner-Devine, A. R., Fong, D. A., Monismith, S. G., and Maxworthy, T. (2006). Laboratory experiments simulating a coastal river inflow. Journal of Fluid Mechanics, 555, 203-232. doi: https://doi.org/10.1017/S0022112006008937
[54] Horner-Devine, A. R., Jay, D. A., Orton, P. M., and Spahn, E. Y. (2009). A conceptual model of the strongly tidal Columbia River plume. Journal of Marine Systems, 78(3), 460-475. doi:https://doi.org/10.1016/j.jmarsys.2008.11.025
[55] Iverson, R. M., Reid, M. E., and LaHusen, R. G. (1997). DEBRIS-FLOW MOBILIZATION FROM LandSLIDES. Annual Review of Earth and Planetary Sciences, 25(1), 85-138. doi:10.1146/annurev.earth.25.1.85
[56] Katopodes, N. D., and Strelkoff, T. (1978). Computing two-dimensional dam-break flood waves. Journal of the Hydraulics Division, Vol. 104, Issue 9, Pg. 1269-1288.
[57] Knudsen, M. (1900). Ein hydrographischer lehrsatz. Annalen der Hydrographie und Maritimen Meteorologie, 28(7), 316-320.
[58] Kuiry, S. N., Pramanik, K., and Sen, D. (2008). Finite volume model for shallow water equations with improved treatment of source terms. Journal of Hydraulic Engineering, 134(2), 231-242. doi:https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(231)
[59] Lardner, R. W., and Cekirge, H. M. (1988). A new algorithm for three-dimensional tidal and storm surge computations. Applied Mathematical Modelling, 12(5), 471-481. doi:https://doi.org/10.1016/0307-904X(88)90084-4
[60] Lazier, J. R. N., and Wright, D. G. (1993). Annual Velocity Variations in the Labrador Current. Journal of Physical Oceanography, 23(4), 659-678. doi:https://doi.org/10.1175/1520-0485(1993)023<0659:AVVITL>2.0.CO;2
[61] Le Roux, D. Y., Staniforth, A., and Lin, C. A. (1998). Finite elements for shallow-water equation ocean models. Monthly Weather Review, 126(7), 1931-1951. doi:https://doi.org/10.1175/1520-0493(1998)126<1931:FEFSWE>2.0.CO;2
[62] Leendertse, J. J. (1967). Aspects of a computational model for long-period water-wave propagation. RAND CORP SANTA MONICA CALIF.
[63] LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems (Vol. 31): Cambridge university press.
[64] LeVeque, R. J., and Leveque, R. J. (1992). Numerical methods for conservation laws (Vol. 132): Springer.
[65] Liu, G., Zhu, J., Wang, Y., Wu, H., and Wu, J. (2011). Tripod measured residual currents and sediment flux: Impacts on the silting of the Deepwater Navigation Channel in the Changjiang Estuary. Estuarine, Coastal and Shelf Science, 93(3), 192-201. doi:https://doi.org/10.1016/j.ecss.2010.08.008
[66] MacCready, P., and Geyer, W. R. (2010). Advances in estuarine physics. Ann Rev Mar Sci, 2, 35-58. doi:10.1146/annurev-marine-120308-081015
[67] MacDonald, D. G. (2004). Turbulent energy production and entrainment at a highly stratified estuarine front. Journal of Geophysical Research, 109(C5). doi:https://doi.org/10.1029/2003jc002094
[68] MacDonald, D. G., Goodman, L., and Hetland, R. D. (2007). Turbulent dissipation in a near-field river plume: A comparison of control volume and microstructure observations with a numerical model. Journal of Geophysical Research, 112(C7). doi:https://doi.org/10.1029/2006jc004075
[69] Manning, A., Langston, W., and Jonas, P. (2010). A review of sediment dynamics in the Severn Estuary: influence of flocculation. Marine Pollution Bulletin, 61(1-3), 37-51.
[70] Manning, A. J., Langston, W. J., and Jonas, P. J. C. (2010). A review of sediment dynamics in the Severn Estuary: Influence of flocculation. Marine Pollution Bulletin, 61(1), 37-51. doi:https://doi.org/10.1016/j.marpolbul.2009.12.012
[71] Marquez, D. J. D. (2016). Estuarine Flocculation. In M. J. Kennish (Ed.), Encyclopedia of Estuaries (pp. 272-273). Dordrecht: Springer Netherlands.
[72] McLusky, D. S., and Elliott, M. (2004). The estuarine ecosystem: ecology, threats and management: OUP Oxford.
[73] Milliman, J. D. (1995). Sediment discharge to the ocean from small mountainous rivers: The New Guinea example. Geo-Marine Letters, 15(3), 127-133. doi:https://doi.org/10.1007/BF01204453
[74] Milliman, J. D., and Syvitski, J. P. M. (1992). Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology, 100(5), 525-544. doi:https://doi.org/10.1086/629606
[75] Ming, H. T., and Chu, C. R. (2000). Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. Journal of hydraulic research, 38(2), 123-131.
[76] Morton, B., Taylor, G. I., and Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 234(1196), 1-23.
[77] Mulder, T., and Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48(2), 269-299. doi:https://doi.org/10.1046/j.1365-3091.2001.00360.x
[78] Mulder, T., Savoye, B., Syvitski, J., and Parize, O. (1997). Des courants de turbidité hyperpycnaux dans la tête du canyon du Var ? Données hydrologiques et observations de terrain Oceanologica Acta, 20(4), 607-626.
[79] Mulder, T., and Syvitski, J. P. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3), 285-299.
[80] Mulder, T., and Syvitski, J. P. M. (1995). Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans. The Journal of Geology, 103(3), 285-299. doi:https://doi.org/10.1086/629747
[81] Nagata, N., Hosoda, T., Nakato, T., and Muramoto, Y. (2005). Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. Journal of Hydraulic Engineering, 131(12), 1074-1087.
[82] Nash, J. D., Kilcher, L. F., and Moum, J. N. (2009). Structure and composition of a strongly stratified, tidally pulsed river plume. Journal of Geophysical Research, 114. doi:https://doi.org/10.1029/2008jc005036
[83] Pielke, R. A. (1974). A three-dimensional numerical model of the sea breezes over south Florida. Monthly Weather Review, 102(2), 115-139. doi:https://doi.org/10.1175/1520-0493(1974)102<0115:ATDNMO>2.0.CO;2
[84] Pramanik, N., Panda, R. K., and Sen, D. (2010). One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections. Water Resources Management, 24(5), 835-852. doi:https://doi.org/10.1007/s11269-009-9474-6
[85] Rawn, A., Bowerman, F., and Brooks, N. H. (1960). Diffusions for Disposal of Sewage in Sea Water. Journal of the Sanitary Engineering Division, 86(2), 65-106.
[86] Rawn, A., and Palmer, H. (1930). Pre-determining the extent of a sewage field in sea water. Transactions of the American Society of Civil Engineers, 94(1), 1036-1060.
[87] Reichardt, H. (1942). Gesetzmassigkeiten der freien Turbulenz. VDI-Forschungsh., 414.
[88] Roe, P., and Pike, J. (1985). Efficient Construction and Utilisation of Approximate Riemann Solutions.
[89] Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357-372. doi:https://doi.org/10.1016/0021-9991(81)90128-5
[90] Shankar, N. J., Cheong, H. F., and Sankaranarayanan, S. (1997). Multilevel finite-difference model for three-dimensional hydrodynamic circulation. Ocean Engineering, 24(9), 785-816. doi:https://doi.org/10.1016/S0029-8018(96)00036-4
[91] Singamsetti, S. R. (1966). Diffusion of sediment in a submerged jet. Journal of the Hydraulics Division, 92(2), 153-168.
[92] Song, L., Zhou, J., Li, Q., Yang, X., and Zhang, Y. (2011). An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography. International Journal for Numerical Methods in Fluids, 67(8), 960-980. doi:https://doi.org/10.1002/fld.2397
[93] Stoker, J. J. (1957). Water waves: the mathematical theory with applications. New York City, United States:Wiley.
[94] Syvitski, J. P., Vorosmarty, C. J., Kettner, A. J., and Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720), 376-380. doi:https://doi.org/10.1126/science.1109454
[95] Tan, W.-Y. (1992). Shallow water hydrodynamics: Mathematical theory and numerical solution for a two-dimensional system of shallow-water equations (Vol. 55): Amsterdam, Netherlands:Elsevier.
[96] Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 219(1137), 186-203. doi:https://doi.org/10.1098/rspa.1953.0139
[97] Taylor, G. I. (1954). The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1155), 446-468. doi:https://doi.org/10.1098/rspa.1954.0130
[98] Tollmien, W. (1926). Berechnung turbulenter ausbreitungsvorgänge. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 6(6), 468-478. doi: https://doi.org/10.1002/zamm.19260060604
[99] Toro, E. F., and Toro, E. (2001). Shock-capturing methods for free-surface shallow flows. New York City, United States:Wiley.
[100] Turner, J. (1986). Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. Journal of Fluid Mechanics, 173, 431-471. doi:https://doi.org/10.1017/S0022112086001222
[101] Walsh, J. J., Biscaye, P. E., and Csanady, G. T. (1988). The 1983–1984 shelf edge exchange processes (SEEP)—I experiment: hypotheses and highlights. Continental Shelf Research, 8(5), 435-456. doi:https://doi.org/10.1016/0278-4343(88)90063-5
[102] Wang, Y. P., Voulgaris, G., Li, Y., Yang, Y., Gao, J., Chen, J., and Gao, S. (2013). Sediment resuspension, flocculation, and settling in a macrotidal estuary. Journal of Geophysical Research: Oceans, 118(10), 5591-5608. doi:https://doi.org/10.1002/jgrc.20340
[103] Whitney, M. M., and Garvine, R. W. (2005). Wind influence on a coastal buoyant outflow. Journal of Geophysical Research: Oceans, 110(C3). doi:https://doi.org/10.1029/2003JC002261
[104] Williams, R. T., and Zienkiewicz, O. C. (1981). Improved finite element forms for the shallow-water wave equations. International Journal for Numerical Methods in Fluids, 1(1), 81-97. doi:https://doi.org/10.1002/fld.1650010107
[105] Wolanski, E., and Elliott, M. (2015). Estuarine ecohydrology: an introduction. Boston: Elsevier Science.
[106] Wolanski, E., and Elliott, M. (2016). 1 - Introduction. In E. Wolanski and M. Elliott (Eds.), Estuarine Ecohydrology (Second Edition) (pp. 1-33). Boston: Elsevier Science.
[107] Wong, S., Hon, Y., and Golberg, M. A. (2002). Compactly supported radial basis functions for shallow water equations. Applied mathematics and computation, 127(1), 79-101. doi:https://doi.org/10.1016/S0096-3003(01)00006-6
[108] Wright, L. D., and Coleman, J. M. (1971). Effluent expansion and interfacial mixing in the presence of a Salt Wedge, Mississippi River Delta. Journal of Geophysical Research (1896-1977), 76(36), 8649-8661. doi:https://doi.org/10.1029/JC076i036p08649
[109] Wright, L. D., and Nittrouer, C. A. (1995). Dispersal of river sediments in coastal seas: Six contrasting cases. Estuaries, 18(3), 494-508. doi:https://doi.org/10.2307/1352367
[110] Wright, S. J. (1977). Mean behavior of buoyant jets in a crossflow. Journal of the Hydraulics Division, 103(ASCE 12944).
[111] Yankovsky, A., and Chapman, D. (1997). A Simple Theory for the Fate of Buoyant Coastal Discharges. Journal of Physical Oceanography - J PHYS OCEANOGR, 27, 1386-1401. doi:https://doi.org/10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2
[112] Yoon, T. H., and Kang, S.-K. (2004). Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Engineering, 130(7), 678-688. doi:https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(678)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64593-
dc.description.abstract在臺灣,水庫清淤是維持用水安全的重要工作,含砂水到達下游時,因為流速及雷諾數降低,河水垂直混和能力大幅下降,會在感潮河段至河口處與密度不同的大陸棚海水形成河口密度流現象,此密度流之料源以粒徑極小的水庫底泥為主,其為凝聚性沉滓,顆粒容易互相絮凝,以致增加吸收重金屬和其他汙染物及營養鹽的表面積,這些污染嚴重的泥砂停留過久,可能會對人口密集且生態多樣的河口地區造成威脅,因此,本研究希望透過數值模擬方法,了解河口密度流的運移特性,希冀能找出影響其流動特性較為關鍵的因子,這將可能有助於減少清淤所造成的汙染和破壞,在達到水庫永續經營目標的同時,保障河口生態及下游居民的生活品質,創造雙贏的局面。
本研究所建立的數值模型主要分成水理部分與質量傳輸部分。水理部分係基於保守形式的淺水波方程式,在空間離散中以有限體積法,搭配Roe近似求解數值通量,並採用三階精度的全差變遞減格式(total variation diminishing scheme)的龍格-庫塔法(Runge–Kutta method)進行時間離散;質量傳輸部分的控制方程式,係基於考慮流體對流及延散作用對質量傳輸造成的影響所建立,為提升模式的穩定性,本研究質量傳輸部分之模型,是以有限差分法中的一階精度之隱式尤拉法進行時間離散,空間離散部分則在對流項採用一階精度迎風格式,延散項使用二階精度的中央差分法進行建模。而本研究所建立的數值模型在水理方面通過一維潰壩問題、長波問題,及駐波問題的驗證,而質量傳輸部分則分別測試了延散項的準確性,及對流項和延散項間的相互關係之驗證。
在完成模式驗證後,本研究分別模擬並討論了河川及泥砂入流條件、潮汐,和延散係數對懸浮載在大陸棚運移模式之影響,結果顯示,潮汐有助於增加質量傳輸能力,另外,河川的入流條件對於泥砂是否能順利向大陸棚方向運移,扮演著重要的角色。最後,本研究模擬不同水庫排砂情境對河口懸浮載運移之影響,在河川出流量不大的情況下,濃度歷線峰值的偏移對河口泥砂運移的影響非常有限。
zh_TW
dc.description.abstractIn Taiwan, the desilting of reservoirs is an important task to ensure sufficient water resources. When suspend load reaches downstream, the flow velocity and Reynolds number decrease, and the vertical mixing of river water will decrease. The sediment-water flow will form estuary density flow with shelf seawater with different density, which occurs from the tidal river reach to the estuary. The source of this density flow is mainly reservoir sediments with small particle sizes, which may carry more heavy metals and other pollutants. These pollutions could pose a threat to densely populated and ecologically diverse estuaries. Therefore, this study would discuss the estuary density flow through numerical simulation methods. This study aims to identify key factors affecting estuary flow characteristics, which may help reduce pollution and damage from dredging. The purpose of this study is to maintain the sustainability of the reservoir while protecting the ecology of the estuary and the quality of life of downstream residents, creating a win-win situation.
The numerical model established in this research is mainly divided into the hydraulic model and sediment mass transport model. The hydraulic model is based on the conservative form of the shallow water equation and applies the finite volume method and the Roe approximation method to solve the numerical flux in spatial discretization. Besides, total variation diminishing (TVD) Runge–Kutta method with third-order accuracy is used for time discretization. The governing equation for the mass transport part is based on the effects of fluid convection and dispersion on mass transportation. In order to improve the stability of the model, the first-order precision implicit Euler method in the finite difference method is used for time discretization. In addition, in the part of spatial discretization, the first-order accuracy is adopted for the convection term, and the central difference method of the second-order accuracy is applied for the dispersion term. The numerical model established in this research has verified the one-dimensional dam-break problem, long-wave problem, and standing-wave problem in the aspect of hydraulics. In the mass transport model, we tested the consistency of the dispersion term and the interrelationship between the dispersion term and advection term respectively.
After completing the model verification, we simulated and discussed the effects of the river and sediment inflow conditions, tidal conditions, and dispersion coefficients on the transport model of suspended loads on the shelf. The results show that the tide can increase mass transport. Also, river inflow condition is a key factor in the intensity of sediment movement to the ocean. At the end of the study, we attempted to simulate the effects of different reservoir dredging schemes on estuary suspended load transport. In the case of small river inflows, the migration of concentration peaks has very limited effects on the transportation of estuarine sediments.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:56:45Z (GMT). No. of bitstreams: 1
ntu-109-R06521306-1.pdf: 7186742 bytes, checksum: ac32dcc4abc75ec7485b01cddc392538 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
謝誌 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 研究動機 1
1.1 研究目的 4
1.2 研究內容 5
第二章 文獻回顧 8
2.1 環境流體 8
2.1.1 分類方法 9
2.1.2 紊流浮力射流 14
2.1.3 羽流 16
2.1.4 河口密度流 17
2.1.5 潮汐及密度分層之影響 18
2.1.6 質量傳輸 23
2.2 淺水波方程式 25
2.3 計算流體力學 26
第三章 控制方程式 30
3.1.1 連續方程式 31
3.1.2 動量方程式 33
3.1.3 質量傳輸之控制方程式 40
第四章 數值方法 46
4.1.1 保守形式淺水波方程式之空間離散 46
4.1.2 Roe型黎曼近似解 49
4.1.3 時間離散 54
4.1.4 源項處理 55
4.1.5 質量傳輸部分 56
第五章 模式驗證 59
5.1 一維潰壩問題 59
5.1.1 題目設計 59
5.1.2 邊界條件 59
5.1.3 模擬結果 60
5.2 潮汐長波問題 62
5.2.1 題目設計 62
5.2.2 邊界條件 63
5.2.3 模擬結果 63
5.3 駐波問題 64
5.3.1 題目設計 64
5.3.2 邊界條件 65
5.3.3 模擬結果 65
5.4 質量傳輸延散項 66
5.4.1 題目設計 66
5.4.2 邊界條件 68
5.4.3 模擬結果 69
5.5 質量傳輸對流及延散項相互關係 70
5.5.1 題目設計 70
5.5.2 邊界條件 71
5.5.3 模擬結果 71
第六章 模擬結果 74
6.1 入流條件之影響 76
6.2 延散係數之影響 79
6.3 潮汐之影響 81
6.4 潮汐類型之影響 84
6.5 入流泥砂濃度之影響 88
6.6 泥砂濃度隨流量變化之影響 90
6.7 側向潮汐之影響 96
6.8 給定三邊潮汐之影響 97
6.9 水庫排砂情境之影響 99
6.9.1 泥砂濃度歷線之影響 99
6.9.2 出流流量歷線之影響 101
第七章 結論與建議 104
7.1 結論 104
7.2 建議 106
參考文獻 107
dc.language.isozh-TW
dc.title運用數值模擬於均勻混合河口懸浮載之運移特性探討zh_TW
dc.titleNumerical Simulation of Suspended Load Transport in Will-Mixed Estuaryen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊智傑(Jay Chih-Chieh Young),林孟郁(Meng-Yu Lin),陳憲宗(Shien-Tsung Chen)
dc.subject.keyword河口密度流,有限體積法,迎風格式,Roe 黎曼近似解,淺水波方程式,zh_TW
dc.subject.keywordEstuary Density Flow,Finite Volume Method (FVM),Roe Solver,Shallow Water Equation,en
dc.relation.page114
dc.identifier.doi10.6342/NTU202000590
dc.rights.note有償授權
dc.date.accepted2020-02-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
7.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved