Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64589
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏慧(Min-huey Chen)
dc.contributor.authorLi-Chung Hwangen
dc.contributor.author黃立忠zh_TW
dc.date.accessioned2021-06-16T17:56:28Z-
dc.date.available2017-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-08-12
dc.identifier.citation1. Pohler, O.E.M., Unalloyed titanium for implants in bone surgery. Injury, 2000. 31, Supplement 4(0): p. D7-D13-D7-D13.
2. Brunette, D.M., Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications2001: Springer.
3. Inoue, T., et al., Effect of the surface geometry of smooth and porous-coated titanium alloy on the orientation of fibroblasts in vitro. Journal of biomedical materials research, 1987. 21(1): p. 107-126.
4. Yang, Y., et al., Enhancing osseointegration using surface-modified titanium implants. JOM Journal of the Minerals, Metals and Materials Society, 2006. 58(7): p. 71-76.
5. Sul, Y.-T., et al., Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials, 2002. 23(2): p. 491-501.
6. Nishimoto, S.K., et al., The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading. The International journal of oral & maxillofacial implants, 2008. 23(4): p. 675-680.
7. Gottlander, M. and T. Albrektsson, Histomorphometric studies of hydroxylapatite-coated and uncoated CP titanium threaded implants in bone. The International journal of oral & maxillofacial implants, 1991. 6(4): p. 399-404.
8. Frauchiger, V.M., et al., Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials, 2004. 25(4): p. 593-606.
9. Fini, M., et al., In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials, 1999. 20(17): p. 1587-1594.
10. Yang, Y., K.-H. Kim, and J.L. Ong, A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials, 2005. 26(3): p. 327-337.
11. Wong, M., et al., Effect of surface topology on the osseointegration of implant materials in trabecular bone. Journal of biomedical materials research, 1995. 29(12): p. 1567-1575.
12. Mor, G.K., et al., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 2006. 90(14): p. 2011-2075.
13. Zhu, K., et al., Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Lett., 2006. 7(1): p. 69-74.
14. Shankar, K., et al., Self-Assembled Hybrid Polymer−TiO2 Nanotube Array Heterojunction Solar Cells. Langmuir, 2007. 23(24): p. 12445-12449.
15. Kislyuk, V.V. and O.P. Dimitriev, Nanorods and nanotubes for solar cells. Journal of nanoscience and nanotechnology, 2008. 8(1): p. 131-148.
16. Albu, S.P., et al., Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Lett., 2007. 7(5): p. 1286-1289.
17. Jia, Y., et al., Synthesis and Characterization of TiO2 Nanotube/Hydroquinone Hybrid Structure. Journal of Nanoscience and Nanotechnology, 2007. 7(2): p. 458-462.
18. Su, H., et al., Biogenic synthesis and photocatalysis of Pd-PdO nanoclusters reinforced hierarchical TiO2 films with interwoven and tubular conformations. Biomacromolecules, 2008. 9(2): p. 499-504.
19. Paulose, M., et al., Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. The journal of physical chemistry. B, 2006. 110(33): p. 16179-16184.
20. Liu, S. and A. Chen, Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing. Langmuir, 2005. 21(18): p. 8409-8413.
21. Varghese, O.K. and C.A. Grimes, Metal oxide nanoarchitectures for environmental sensing. Journal of nanoscience and nanotechnology, 2003. 3(4): p. 277-293.
22. Park, J., et al., Nanosize and Vitality:  TiO2 Nanotube Diameter Directs Cell Fate. Nano Lett., 2007. 7(6): p. 1686-1691.
23. Oh, S., et al., Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A, 2006. 78(1): p. 97-103.
24. Brammer, K.S., et al., Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano letters, 2008. 8(3): p. 786-793.
25. Park, J.-W., I.-S. Jang, and J.-Y. Suh, Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: a histomorphometric study in the rabbit femur. Journal of biomedical materials research. Part B, Applied biomaterials, 2008. 84(2): p. 400-407.
26. Popat, K.C., et al., Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. Journal of biomedical materials research. Part A, 2007. 80(4): p. 955-964.
27. Oh, S., et al., Stem Cell Fate Dictated Solely by Altered Nanotube Dimension. Proceedings of the National Academy of Sciences, 2009.
28. Bauer, S., S. Kleber, and P. Schmuki, TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications, 2006. 8(8): p. 1321-1325.
29. Tsuchiya, H., et al., Self-Organization of Anodic Nanotubes on Two Size Scales. Small, 2006. 2(7): p. 888-891.
30. Billiau, A., et al., In vitro cultivation of human tumor tissues. Oncology, 1975. 31(5-6): p. 257-272.
31. Billiau, A., M. Joniau, and P. De Somer, Mass Production of Human Interferon in Diploid Cells Stimulated by Poly-I:C. Journal of General Virology, 1973. 19(1): p. 1-8.
32. Zhao, L., et al., Suppressed primary osteoblast functions on nanoporous titania surface. Journal of biomedical materials research. Part A, 2011. 96(1): p. 100-107.
33. Vlacic-Zischke, J., et al., The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts. Biomaterials, 2011. 32(3): p. 665-671.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64589-
dc.description.abstract人工牙根已成功地應用在患者缺牙區的治療上,但由於材料鈦金屬與骨結合仍須3至6個月的等待時間,對患者而言仍感到不便甚至痛苦 (尤其是全口無牙的情形)。因此,加速骨整合、縮短癒合時間已成為牙科生醫材料重要的目標; 這個目標便關係到植體表面與骨細胞之間的交互作用。為了研發出最適合骨細胞生長分化的界面,有些學者發現:不只是在微米領域中植體表面的粗糙度是影響的關鍵,在奈米領域中植體表面的型態對細胞的生長分化更有舉足輕重的影響。因此而研發出多種方法製造奈米級的特殊型態。其中一個方法便是利用陽極氧化電解法製造奈米管,此法具有精準、簡易、相對經濟的優點。本實驗使用此法製造不同管徑(10 nm、5o nm、100 nm)奈米管氧化鈦的植體表面,以未經電解處理之鈦金屬作為對照組,並利用體外培養的方式與類骨細胞共同培養,來探討兩者之間的作用關係,其中包括:貼附,增殖、礦化等作用。本實驗發現:類骨細胞的反應不同於其他幹細胞(MSC)的反應,以具有50 nm奈米管的鈦表面在不同的時間點上顯示出相對適宜類骨細胞貼附、礦化作用的結果,此有別於其他學者的研究結果。zh_TW
dc.description.abstractDental implants are successfully applied in the clinical field. Due to 3-6 months of healing time, the patients suffer from the care process so much. So, to enhance the osteointegration and to shorten the healing time become the aims to improve the dental care. The interaction between the implant and the bone tissue becomes the issue. Some researchers show that the roughness of the implant affects the fate of the cells not only in the micro-scale level but also in the nano-scale level. We look for the methods to fabricate the appropriate roughness in the nano-scale level which can enhance the osteointegration and shorten the healing time of the treatment .There are several ways to modify the Ti surface in the nano-scale level. Among of them, the anodic oxidation is one with the advantages of relative preciseness, simplicity and economic efficiency. So we fabricated various implant surface with different diameter nanotubes by the method of electrolytic anodic oxidation, and investigated the interaction of specimen and the osteoblast-like cell (MG63) during the co-culture each other in vitro. In our research, we found that MG-63 cells, a line derived from osteosarcoma, react differently from those stem cells mentioned by other researchers, and that 50 nm diameter nanotube of titanium surface is relatively the most appropriate one for the cells to differentiate and adhere compared with the other diameter nanotubes of Ti specimens.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:56:28Z (GMT). No. of bitstreams: 1
ntu-101-P98422006-1.pdf: 8652497 bytes, checksum: 604bc7bcc33b988bb38cf139d709e6cd (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
第一章 緒論 1
第二章 實驗材料與方法 5
2-1 奈米管氧化鈦表面結構的製備 5
2-2 類骨細胞(MG63)實驗控制組之備製 7
2-3 細胞貼附反應測試(cell adhesion test, cell count) 8
2-4 細胞增殖反應(cell growth test, MTT) 9
2-5 細胞分化反應測試(Alkaline phosphatase activity test,ALP) 10
第三章 結果與討論 11
3-1 具有不同管徑奈米管氧化鈦的製備 11
3-2 MG-63 細胞 32
3-3 細胞貼附測試 34
3-4 細胞生長反應測試 Cell growth test (MTT) 36
3-5 細胞礦化反應測試(ALP) 38
第四章 結論 40
第五章 參考文獻 41
dc.language.isozh-TW
dc.subject牙科植體zh_TW
dc.subject陽極氧化zh_TW
dc.subject電解zh_TW
dc.subject奈米管zh_TW
dc.subject類骨細胞(MG63)zh_TW
dc.subject植體表面處理zh_TW
dc.subjectnanotubeen
dc.subjectanodic oxidationen
dc.subjectelectrolysisen
dc.subjectdental implanten
dc.subjectMG-63en
dc.subjectimplant surface managementen
dc.title植體表面不同管徑奈米管對類骨細胞的影響zh_TW
dc.titleThe Effects of the TiO2 Nanotubes on Implant Surface to the Osteoblast-like Cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊台鴻,林俊彬
dc.subject.keyword植體表面處理,陽極氧化,電解,牙科植體,類骨細胞(MG63),奈米管,zh_TW
dc.subject.keywordimplant surface management,anodic oxidation,electrolysis,dental implant,MG-63,nanotube,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2012-08-13
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved