Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64588
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原
dc.contributor.authorYu-Ru Huangen
dc.contributor.author黃鈺茹zh_TW
dc.date.accessioned2021-06-16T17:56:24Z-
dc.date.available2015-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-10
dc.identifier.citation1. Chang, C. L.; Fogler, H. S., Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS. Aiche J 1996, 42 (11), 3153-3163.
2. (a) Massoud, T. F.; Gambhir, S. S., Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev 2003, 17 (5), 545-580; (b) Na, H. B.; Song, I. C.; Hyeon, T., Inorganic Nanoparticles for MRI Contrast Agents. Adv Mater 2009, 21 (21), 2133-2148.
3. Cheon, J.; Lee, J. H., Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Accounts Chem. Res. 2008, 41 (12), 1630-1640.
4. Caravan, P., Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 2006, 35 (6), 512-523.
5. (a) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B., Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem Rev 1999, 99 (9), 2293-2352; (b) Datta, A.; Hooker, J. M.; Botta, M.; Francis, M. B.; Aime, S.; Raymond, K. N., High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: Nanosized MRI contrast agents. J Am Chem Soc 2008, 130 (8), 2546-2552.
6. Raymond, K. N.; Pierre, V. C., Next generation, high relaxivity gadolinium MR1 agents. Bioconjugate Chem. 2005, 16 (1), 3-8.
7. Prasuhn, D. E.; Yeh, R. M.; Obenaus, A.; Manchester, M.; Finn, M. G., Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Commun 2007, (12), 1269-1271.
8. Silva, A. C.; Bock, N. A., Manganese-enhanced MRI: An exceptional tool in translational neuroimaging. Schizophrenia Bull 2008, 34 (4), 595-604.
9. (a) Na, H. B.; Lee, J. H.; An, K. J.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. H.; Kim, S. T.; Kim, S. H.; Kim, S. W.; Lim, K. H.; Kim, K. S.; Kim, S. O.; Hyeon, T., Development of a T-1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Edit 2007, 46 (28), 5397-5401; (b) Shin, J. M.; Anisur, R. M.; Ko, M. K.; Im, G. H.; Lee, J. H.; Lee, I. S., Hollow Manganese Oxide Nanoparticles as Multifunctional Agents for Magnetic Resonance Imaging and Drug Delivery. Angew Chem Int Edit 2009, 48 (2), 321-324; (c) Choi, D.; Han, A.; Park, J. P.; Kim, J. K.; Lee, J. H.; Kim, T. H.; Kim, S. W., Fabrication of MnxFe1-xO Colloidal Solid Solution as a Dual Magnetic-Resonance-Contrast Agent. Small 2009, 5 (5), 571-573.
10. (a) Pan, D.; Caruthers, S. D.; Senpan, A.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M., Revisiting an old friend: manganese-based MRI contrast agents. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2010, 3(2), 162-173; (b) Kim, J. H.; Lee, C. H.; Lee, S. K., Superparamagnetic Gd- and Mn-substituted Magnetite Fluids Applied as MRI Contrast Agents. B Korean Chem Soc 2009, 30 (6), 1305-1308; (c) Huang, J.; Zhong, X.; Wang, L.; Yang, L.; Mao, H., Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2012, 2 (1), 86-102.
11. Stober, W.; Fink, A.; Bohn, E., Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. J Colloid Interf Sci 1968, 26 (1), 62-69.
12. Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H., Revisiting the Stober method: inhomogeneity in silica shells. J Am Chem Soc 2011, 133 (30), 11422-11425.
13. Caruso, F.; Caruso, R. A.; Mohwald, H., Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282 (5391), 1111-1114.
14. Lou, X. W.; Archer, L. A.; Yang, Z. C., Hollow Micro-/Nanostructures: Synthesis and Applications. Adv Mater 2008, 20 (21), 3987-4019.
15. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 2004, 304 (5671), 711-714.
16. Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A., Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 2006, 18 (17), 2325-2329.
17. (a) Ni, Y. H.; Tao, A.; Hu, G. Z.; Cao, X. F.; Wei, X. W.; Yang, Z. S., Synthesis, characterization and properties of hollow nickel phosphide nanospheres. Nanotechnology 2006, 17 (19), 5013-5018; (b) Zimmermann, C.; Feldmann, C.; Wanner, M.; Gerthsen, D., Nanoscale gold hollow spheres through a microemulsion approach. Small 2007, 3 (8), 1347-1349; (c) Buchold, D. H. M.; Feldmann, C., Nanoscale gamma-AIO(OH) hollow spheres: Synthesis and container-type functionality. Nano Lett 2007, 7 (11), 3489-3492; (d) Li, Y. S.; Shi, J. L.; Hua, Z. L.; Chen, H. R.; Ruan, M. L.; Yan, D. S., Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett 2003, 3 (5), 609-612.
18. Peng, Q.; Dong, Y. J.; Li, Y. D., ZnSe semiconductor hollow microspheres. Angew Chem Int Edit 2003, 42 (26), 3027-3030.
19. (a) Sugimoto, T., Preparation of Monodispersed Colloidal Particles. Adv Colloid Interfac 1987, 28 (1), 65-108; (b) Lamer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J Am Chem Soc 1950, 72 (11), 4847-4854.
20. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Edit 2007, 46 (25), 4630-4660.
21. Hifumi, H.; Yamaoka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K., Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 2006, 128 (47), 15090-15091.
22. Johnson, N. J. J.; Sangeetha, N. M.; Boyer, J. C.; van Veggel, F. C. J. M., Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting -NaYF4:Yb3+/Er3+ nanoparticles (vol 2, pg 771, 2010). Nanoscale 2010, 2 (12), 771-777.
23. Baggio, R.; Calvo, R.; Garland, M. T.; Pena, O.; Perec, M.; Rizzi, A., Gadolinium and neodymium citrates: Evidence for weak ferromagnetic exchange between gadolinium(III) cations. Inorg Chem 2005, 44 (24), 8979-8987.
24. Cao, Y. C., Synthesis of square gadolinium-oxide nanoplates. J Am Chem Soc 2004, 126 (24), 7456-7457.
25. Boakye, E. E.; Mogilevsky, P.; Hay, R. S.; Fair, G. E., Synthesis and Phase Composition of Lanthanide Phosphate Nanoparticles LnPO(4) (Ln=La, Gd, Tb, Dy, Y) and Solid Solutions for Fiber Coatings. J Am Ceram Soc 2008, 91 (12), 3841-3849.
26. Yoshida, K.; Ikuhara, Y. H.; Takahashi, S.; Hirayama, T.; Saito, T.; Sueda, S.; Tanaka, N.; Gai, P. L., The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 2009, 20 (31), 315703.
27. (a) Arai, Y.; Sparks, D. L., ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J Colloid Interf Sci 2001, 241 (2), 317-326; (b) Das, S. K.; Mandal, S. S.; Bhattacharyya, A. J., Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional ('Janus') 'soggy sand' electrolytes. Energ Environ Sci 2011, 4 (4), 1391-1399.
28. (a) Soderlind, F.; Pedersen, H.; Petoral, R. M.; Kall, P. O.; Uvdal, K., Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J Colloid Interf Sci 2005, 288 (1), 140-148; (b) Lu, Y. Q.; Miller, J. D., Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J Colloid Interf Sci 2002, 256 (1), 41-52.
29. Johnson, N. J. J.; Oakden, W.; Stanisz, G. J.; Prosser, R. S.; van Veggel, F. C. J. M., Size-Tunable, Ultrasmall NaGdF4 Nanoparticles: Insights into their T-1 MRI Contrast Enhancement. Chem Mater 2011, 23 (21), 3714-3722.
30. Zhang, T. R.; Ge, J. P.; Hu, Y. P.; Yin, Y. D., A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 2007, 7 (10), 3203-3207.
31. (a) Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A., A general method to coat colloidal particles with silica. Langmuir 2003, 19 (17), 6693-6700; (b) Yi, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y., Nanoparticle architectures templated by SiO(2)/Fe(2)O(3) nanocomposites. Chem Mater 2006, 18 (3), 614-619; (c) Jana, N. R.; Earhart, C.; Ying, J. Y., Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 2007, 19 (21), 5074-5082; (d) Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W. K.; Choi, S. H.; Hyeon, T., Water-Dispersible Ferrimagnetic Iron Oxide Nanocubes with Extremely High r(2) Relaxivity for Highly Sensitive in Vivo MRI of Tumors. Nano Lett 2012, 12 (6), 3127-3131.
32. (a) Lin, Y. S.; Hung, Y.; Su, J. K.; Lee, R.; Chang, C.; Lin, M. L.; Mou, C. Y., Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B 2004, 108 (40), 15608-15611; (b) Platas-Iglesias, C.; Vander Elst, L.; Zhou, W. Z.; Muller, R. N.; Geraldes, C. F. G. C.; Maschmeyer, T.; Peters, J. A., Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging. Chem-Eur J 2002, 8 (22), 5121-5131.
33. Weishaupt, D.; KÖchli, V. D.; Marincek, B., How does MRI work?, Springer, New York 2006.
34. Edelman, R. R.;Zlatkin, M. B.; Hesselink, J. R., Clinical Magnetic Resonance Imaging, Saunders 1996.
35. Brown, M. A.; Semelka, R. C., MRI Basic Principles and Applications, Wiley-Blackwell 2010.
36. Hofer, M., CT Teaching Manual, Thieme.
37. Phelps, M. E.; Mazziotta, J. C.; Schelbert, H. R., Positron Emission Tomography and Autoradiography, Raven, New York 1986.
1. Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004, 104 (1), 293-346.
2. (a) Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933-937; (b) Logunov, S. L.; Ahmadi, T. S.; ElSayed, M. A.; Khoury, J. T.; Whetten, R. L., Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 1997, 101 (19), 3713-3719; (c) Melinger, J. S.; Kleiman, V. A.; McMorrow, D.; Grohn, F.; Bauer, B. J.; Amis, E., Ultrafast dynamics of gold-based nanocomposite materials. J Phys Chem A 2003, 107 (18), 3424-3431.
3. Turkevich, J.; Stevenson, P. C.; Hillier, J., A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss Faraday Soc 1951, 11 (11), 55-75.
4. Frens, G., Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions. Nature-Phys Sci 1973, 241 (105), 20-22.
5. Yonezawa, T.; Kunitake, T., Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloid Surface A 1999, 149 (1-3), 193-199.
6. Giersig, M.; Mulvaney, P., Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition. Langmuir 1993, 9 (12), 3408-3413.
7. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J Chem Soc Chem Comm 1994, (7), 801-802.
8. Hussain, I.; Graham, S.; Wang, Z. X.; Tan, B.; Sherrington, D. C.; Rannard, S. P.; Cooper, A. I.; Brust, M., Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers. J Am Chem Soc 2005, 127 (47), 16398-16399
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64588-
dc.description.abstract近年來核磁共振造影(Magnetic Resonance Imaging, MRI)在醫療診斷上扮演極為重要的角色,核磁共振顯影劑的開發更是此領域相當重要的一環,核磁共振顯影劑的優劣影響診斷甚鉅,衡量顯影劑的好壞是根據弛緩率值(Relaxivity)與其生物毒性高低決定。本論文的貢獻在於提供低生物毒性之釓磷錯合物二氧化矽空球(GdPO4@SiO2)與釓金屬氧化物二氧化矽空心球(Gd2O3@HSN),合成更佳的核磁共振顯影劑,有助於未來提升醫療診斷品質。
本研究中,以二氧化矽空心球包覆不同釓金屬化合物作為主軸,並依其合成方式分為兩個部分。第一部分我們利用改良後StÖber方式將釓金屬順磁性物質包入二氧化矽空心球中,並藉由調控磷酸二氫銨的濃度形成不同莫耳比的釓磷錯合物包入二氧化矽空球(GdPO4@SiO2)中,探討不同莫耳比釓磷錯合物奈米複合材料對於弛緩率的影響。透過穿透式電子顯微鏡、動力光散射儀、感應耦合電漿質譜儀及X光粉末繞射儀鑑定其組成結構。由於釓金屬(Gd3+)對人體具有相當毒性,而此釓磷錯合物的低溶解性,使得該複合材料降低其生物毒性,對於核磁共振顯影劑在人體應用極具潛力。
第二部分先以熱分解方法合成釓金屬氧化物再以配位體交換的方式將oleate的保護基置換成水溶性PVP保護基,接著再以微乳液合成法將此水溶性釓金屬氧化物包入二氧化矽空心球中,探討二氧化矽空心球中不同濃度的釓金屬氧化物對於弛緩率的影響。
zh_TW
dc.description.abstractIn recent years, magnetic resonance imaging (MRI) is one of the paramount techniques in diagnostic and biomedical research, providing a nondestructive tool in examining soft tissues. Because of the relatively low sensitivity, contrast agents are often used in MRI diagnoses. Contrast agents can be divided into two groups: positive contrast agents and negative contrast agents. Positive contrast agents are mostly paramagnetic transition metals like Gd3+ ion, however, the free Gd3+ ion has been shown to be toxic both in vitro and in vivo studies. Therefore, chelation of Gd3+ ion is a way to avoid the toxicity for in vivo use.
In first section, we synthesized GdPO4@SiO2-PEG500 nanoparticles based on the modified StÖber method.. By varying the concentration of NH4H2PO4, we obtained the GdPO4@SiO2 nanoparticles and investigate the effect on the relaxivities. The second section, we developed a water-in-oil (W/O) approach to incorporate PVP-stabilized gadolinium oxide nanoparticles in hollow silica nanospheres. Gadolinium oxide particles were synthesized by thermal decomposition method and then ligand exchange with PVP. By varying the concentration of PVP-stabilized Gd2O3 nanoparticles encapsulated in hollow silica nanosphere, we also investigated the effect on the relaxivities. These nanoparticles were characterized by TEM, relaxation measurements, DLS, XRD, FTIR and ICP-MS.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:56:24Z (GMT). No. of bitstreams: 1
ntu-101-R99223180-1.pdf: 4597398 bytes, checksum: 630b5c812be80e6e5598f83bbb8bdc5e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsPart One: Magnetic Resonance Imaging (MRI) Contrast Agents 1
1. Chapter One: Introduction 1
1.1 Biomedical Imaging Modalities 1
1.1.1 Magnetic Resonance Imaging (MRI) 2
1.1.2 Positron Emission Tomography (PET) 2
1.1.3 Computed X-ray Tomography (CT) 3
1.2 Magnetic Resonance Imaging and Contrast Agents 3
1.2.1 Theory of MRI 3
1.2.2 Contrast Agents of MRI 6
1.2.3 Gd(Ⅲ) based T1 contrast agents 6
1.2.4 Mn(Ⅱ) based T1 contrast agents 10
1.2.5 T2 contrast agents 11
1.3 Silica-Based Nanoparticles 12
1.3.1 StÖber Method 12
1.3.2 Hollow structures by microemulsion method 13
1.4 Monodisperse Spherical Nanoparticles 18
2. Chapter Two Gadolinium Nanoparticles Encapsulated in Hollow Silica Nanospheres 22
2.1 Experimental Section 22
2.1.1 Materials and Instrumentation 22
2.1 Synthetic Procedures 27
2.1.1 Synthesis of GdPO4@SiO2-PEG500 and Gd@SiO2-PEG500 27
2.1.2 Synthesis of Gd2O3 28
2.1.3 Synthesis of Gd compound encapsulated in hollow silica nanosphere (Gd2O3@HSNs) 30
2.1.4 Gadolinium ion leaching experiments 31
2.2 Results and discussion 32
A. GdPO4@SiO2-PEG500 32
Powder X-ray Diffraction (XRD) Patterns 33
Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) 34
Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) 38
Nuclear Magnetic Resonance Spectroscopy 40
Fourier Transform Infrared (FTIR) Spectroscopy and Elemental Analysis (EA) 42
N2 adsorption-desorption isotherms 46
Relaxivities of GdPO4@SiO2-PEG500 (1.41T) 48
2.3 Conclusions 52
B. Gd2O3 nanoparticles 53
Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) 54
Powder X-ray Diffraction (XRD) Patterns 56
Fourier Transform Infrared (FTIR) Spectroscopy 57
Relaxivities of Gd2O3 (1.41T) 59
C. Gd2O3 nanoparticles encapsulated into hollow silica nanospheres (Gd2O3@HSNs) 61
Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) 62
Relaxivities of Gd2O3@HSNs (1.41T) 64
2.4 Conclusion 67
References 68
Part Two: Size tunable Au Nanopaticles Encapsulated in Hollow Silica Nanospheres 72
3. Chapter Three: Brief Introduction 72
4. Chapter Four: Experimental Section 75
4.1 Materials and Instrumentation 75
4.1.1 Materials: 75
4.1.2 Instruments: 75
4.2 Synthesis Procedures 76
4.2.1 Preparation of hydrogen tetrachloroaurate (Ⅲ) trihydrate solution8 76
4.2.2 Synthesis of size tunable gold nanoparticles encapsulated in hollow silica nanospheres (Au@HSNs) 77
5. Chapter Five: Results and Discussion 79
5.1 Fourier Transform Infrared (FTIR) Spectroscopy and Element Analysis 80
5.2 1H NMR 81
5.3 GPC analysis: 82
5.4 Transmission Electron Microscopy (TEM) 82
5.5 Powder X-ray Diffraction (XRD) Patterns 86
5.6 Conclusion 88
Appendix 89
Reference: 91
dc.language.isozh-TW
dc.title二氧化矽空心球在核磁共振顯影上之應用zh_TW
dc.titleHollow Silica Nanospheres for Magnetic Resonance Imaging Applicationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周必泰,吳嘉文
dc.subject.keyword磁共振影像,二氧化矽空心球,釓金屬氧化物,熱分解,油包水,zh_TW
dc.subject.keywordMR images,hollow silica spheres,gadolinium oxide,thermal decomposition,water-in-oil,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2012-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved