請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64581
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃維信(Wei-Shien Hwang) | |
dc.contributor.author | Yu-Hung Shih | en |
dc.contributor.author | 施育宏 | zh_TW |
dc.date.accessioned | 2021-06-16T17:55:57Z | - |
dc.date.available | 2014-08-15 | |
dc.date.copyright | 2012-08-15 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-10 | |
dc.identifier.citation | 參考文獻
[1] Mikhlin, S. G., Integral Equations. London: Press, 1957. [2] Jaswon, M. A., “Integral Equation Methods in Potential Theory─I” Proc. Roy. Soc. Lond., vol. A275, pp. 23-32, 1963. [3] Symm, G. T., “Integral Equation Methods in Potential Theory─II” Proc. Roy. Soc. Lond., vol. A275, pp. 33-46, 1963. [4] Rizzo, F. J. “An integral equation approach to boundary value problems of classical elastostatics” Quart. Appl. Math., vol. 25, pp. 83-95, 1967. [5] Cruse, T. A. “Numerical solutions in three dimensional elastostatics”, Int. J. Solids and Structures, vol. 5, pp. 1259-1274, 1969. [6] Cruse, T. A. and Rizzo, F. J., Boundary Integral Equation Method, New York: McGraw-Hill, 1975. [7] Lachat, J. C. and J. O. Watson, “A second generation boundary integral equation program for three-dimensional elastic analysis”, ASME Applied Mechanics Division National Conference, New York, 1975. [8] Banerjee, P. K. and Butterfield R., Boundary element method in geomechanics’, Chapter 16 in Finite element in geo-mechanics (Ed. G. Gudehus) 1977 (John Wiley & Sons, New York). [9] Brebbia, C. A., The Boundary Element Method for Engineers, London: Pentech Press, 1978. [10] Brebbia, C. A. and Walker, S., Boundary Element Techniques in Engineering, London: Pentech Press, 1980. [11] Brebbia, C. A., Progress in Boundary Element Method. vol. 1, London: Pentech Press, 1981. [12] Brebbia, C. A., Progress in Boundary Element Method. vol. 2, London: Pentech Press, 1983. [13] Brebbia, C. A., Progress in Boundary Element Method. vol. 3, London: Pentech Press, 1984. [14] Brebbia, C. A., Telles, J. C. and Wrobel, L. C., Boundary Element Techniques Theory and Applications in Engineering, Berlin: Springer Verlag, 1984. [15] Hess, J. L. and Smith, A. M., “Calculation of nonlifting potential flow about arbitrary three-dimensional smooth bodies, J. Ship Research, vol. 7, pp. 22-44, 1964. [16] Morino, L. and Kuo, C. C., “Subsonic potential aerodynamics for complex configurations: a general theory”, AIAA J., vol. 12, pp. 191-197, 1974. [17] Maskew, B., “Prediction of subsonic aerodynamic characteristics: a case for low-order panel methods”, J. Aircr., vol. 19, pp. 157-163, 1982. [18] Dragos, L. and Dinu, A., “Application of the boundary element method to the thin airfoil theory”, AIAA J., vol. 28, pp. 1822-1824, 1990. [19] Dragos, L. and Dinu, A., “A direct boundary integral method for the three-dimensional lifting flow”, Compt. Methods Appl. Mech. Engrg., vol. 127, pp. 357-370, 1995. [20] Carabineanu, A., “A boundary element approach to the 2D potential flow problem around airfoils with cusped trailing edge, Compt. Methods Appl. Mech. Engrg., vol. 129, pp. 213-219, 1996. [21] Katz, J. and Plotkin, A., Low-Speed Aerodynamics: From Wing Theory to Panel Methods, McGraw-Hill, New York, 1991. [22] Landweber, L. and Macagno M., Irrotational Flow about Ship Forms, IHHR Report, Iowa, No. 123, 1969. [23] Hwang, W. S., “A boundary node method for airfoils based on the Dirichlet condition,” Comput. Methods Appl. Mech. Eng., vol. 190, pp. 1679-1688, 2000. [24] Becker, A. A., The Boundary Element Method in Engineering: A Complete Course, McGraw-Hill International, 1992. [25] Kytbe, P. K., An Introduction to Boundary Element Methods, CRC Press Inc, 1995. [26] Moran, J., An Introduction to Theoretical and Computational Aerodynamics, 1984. [27] Anderson, John D., Fundamentals of Aerodynamics Third Edition, McGraw-Hill, 2001. [28] Hess, J L., Higher Order Numerical Solution Of The Integral Equation For The Two-Dimensional Neumann Problem, Computer Methods Appl. Mech. Eng., vol. 2, pp. 1-15, 1973. [29] 吳洪潭,「邊界元法在熱傳學中的應用」,國防工業出版社。 [30] 祝家麟,袁政強,「邊界元分析」,科學出版社。 [31] 陳正宗,洪宏基,「邊界元素法」,第二版,新世界出版社,1992。 [32] 黃裕洋,「無奇異性邊界元素法求解勢流場之研究」,國立台灣大學博士論文,1998。 [33] 葛家豪,「邊界元素法對三維水沖激問題之數值模擬」,國立台灣大學碩士論文,1998。 [34] 黃盈翔,「非奇異性邊界積分法對二維矩形流場之數值模擬」,國立台灣大學碩士論文,2004。 [35] 廖健凱,「邊界元素法對二維翼型之流場分析」,國立台灣大學碩士論文,2011。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64581 | - |
dc.description.abstract | 本文以二維翼型為主要研究之對象,尋找均勻流流經此翼型之跡流位置。本文假設流場內之流體滿足勢流,以邊界元素法描繪物體邊界之幾何及在邊界元素上的物理量分布狀況,使用高斯積分法對離散後的積分方程式進行積分並組成核函數矩陣,求解此翼型表面上之速度勢。最後將邊界上所求的速度位勢帶入邊界積分式以求解流場中各點位置的速度位勢,再藉由三次曲線(Cubic Spline)法線方向速度會有最小值的關係式找出跡流軌跡位置。本文將以賈可斯基翼為例,尋找出均勻流流經翼型之跡流位置。 | zh_TW |
dc.description.abstract | This study focuses on two-dimensional flows of airfoils, looking for the wake position for a uniform flow over an airfoil. The flow is assumed to satisfy the potential theory. First of all, the Boundary Integral Equation is applied to solve the velocity potential on the boundary of the airfoil. Once the strength of the velocity potential is solved, it is substituted into the Boundary Integral Equation to find the flow field velocity potential at the collocation points. Use cubic curve (Cubic Spline) of normal velocity components to be zero are then used to determine the location of the wake. The Joukowski airfoil and NACA airfoils are used as test cases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:55:57Z (GMT). No. of bitstreams: 1 ntu-101-R99525054-1.pdf: 2651494 bytes, checksum: 20972620e4d8583e7b926453886c5c63 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試審定書……………………………………………………………………………I 誌謝 II 摘要 III ABSTRACT IV 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究動機及背景 1 1.2 文獻回顧 1 1.3 研究目的與方法 4 第二章 基本理論 6 2.1 基本假設 6 2.2 高斯散度定理、格林第一定理及格林第二定理 6 2.3 邊界積分方程式 8 2.4 二維邊界元素法 11 2.5 二維翼型外流場 19 第三章 數值計算 25 3.1 二維外流場數值分析與計算結果 25 3.2 二維翼型外流場數值分析與計算結果 27 第四章 翼型尾流驗證分析 41 4.1 薄翼邊界流場之計算 41 4.2 薄翼外部流場計算壓力分佈 (Cp) 50 4.3 機翼尾流速度驗證分析 53 4.4 直線線段找尋機翼跡流位置 61 4.5 機翼跡流之定位 71 4.6 NACA系列翼型之外流場分析 85 4.6.1 NACA0015翼型 85 4.6.2 NACA4310翼型 89 4.6.3 變化的NACA0015翼型 93 第五章 結論與展望 97 5.1 結論 97 5.2 展望 98 參考文獻 99 | |
dc.language.iso | zh-TW | |
dc.title | 利用最小方差法對二維翼型之跡流定位 | zh_TW |
dc.title | Location of Two-Dimensional Airfoil Wake Using Least Squares Methods | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝傳璋,王昭男,辛敬業 | |
dc.subject.keyword | 翼型,邊界元素法,速度勢,賈可斯基翼,跡流, | zh_TW |
dc.subject.keyword | airfoil,boundary element method,velocity potential,Joukowski,wake, | en |
dc.relation.page | 102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。