Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorYu-Fu Kaoen
dc.contributor.author高毓甫zh_TW
dc.date.accessioned2021-06-16T17:55:53Z-
dc.date.available2017-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-10
dc.identifier.citation[1] N. Dalal and B. Triggs, 'Histograms of Oriented Gradients for Human Detection,' in IEEE Conference on Computer Vision and Patter Recognition, 2005, pp. 886~893.
[2] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, 'Fast Human Detection Using a Cascade of Histograms of Oriented Gradients,' in IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1491-1498.
[3] C. Huang and R. Nevatia, 'High performance object detection by collaborative learning of Joint Ranking of Granules features,' in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 41-48.
[4] X. Wang, T. X. Han, and S. Yan, 'An HOG-LBP human detector with partial occlusion handling,' in IEEE International Conference on Computer Vision, 2009, pp. 32-39.
[5] G. Duan, C. Huang, H. Ai, and S. Lao, 'Boosting Associated Pairing Comparison Features for pedestrian detection,' in IEEE International Conference on Computer Vision Workshops, 2009, pp. 1097-1104.
[6] Z. Lin and L. S. Davis, 'A Pose-Invariant Descriptor for Human Detection and Segmentation,' presented at the Proceedings of the 10th European Conference on Computer Vision: Part IV, Marseille, France, 2008.
[7] H. Chang, A. Haizhou, L. Yuan, and L. Shihong, 'Learning sparse features in granular space for multi-view face detection,' in The 7th IEEE International Conference on Automatic Face and Gesture Recognition, 2006, pp. 401-406.
[8] S. Maji, A. C. Berg, and J. Malik, 'Classification using intersection kernel support vector machines is efficient,' in IEEE International Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
[9] O. Tuzel, F. Porikli, and P. Meer, 'Human detection via classification on riemannian manifolds,' in IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1-8.
[10] S. Kirkpatrick, C. D. Gelatt, and J. a. M. P. Vecchi, 'Optimization by simulated annealing,' Science, 1985.
[11] P. Felzenszwalb, D. McAllester, and D. Ramanan, 'A discriminatively trained, multiscale, deformable part model,' in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
[12] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, 'Object Detection with Discriminatively Trained Part-Based Models,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010.
[13] Y.-T. Chen and C.-S. Chen, 'Fast Human Detection Using a Novel Boosted Cascading Structure With Meta Stages,' IEEE Transactions on Image Processing, vol. 17, pp. 1452-1464, 2008.
[14] R. E. Schapire and Y. Singer, 'Improved Boosting Algorithms Using Confidence-rated Predictions,' Machine Learning, vol. 37, pp. 297-336, 1999.
[15] K. Mikolajczyk, C. Schmid, and A. Zisserman, 'Human detection based on a probabilistic assembly of robust part detectors,' in European Conference on Computer Vision, 2004, pp. 69-82.
[16] W. Bo and R. Nevatia, 'Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors,' in IEEE International Conference on Computer Vision, 2005, pp. 90-97.
[17] B. Leibe, E. Seemann, and B. Schiele, 'Pedestrian detection in crowded scenes,' in IEEE International Conference on Computer Vision and Pattern Recognition, 2005, pp. 878-885.
[18] P. Dollar, C. Wojek, B. Schiele, and P. Perona, 'Pedestrian Detection: An Evaluation of the State of the Art,' IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, 2011.
[19] S. Maji and A. C. Berg, 'Max-margin additive classifiers for detection,' in IEEE International Conference on Computer Vision, 2009, pp. 40-47.
[20] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, 'Human detection using partial least squares analysis,' in IEEE International Conference on Computer Vision, 2009, pp. 24-31.
[21] V. N. Vapnik, The Nature of Statistical Learning Theroy. New York: Springer-Verlag, 1995.
[22] T. G. Dietterich and G. Bakiri, 'Solving multiclass learning problems via error-correcting output codes,' J. Artif. Int. Res., vol. 2, pp. 263-286, 1995.
[23] D. G. Lowe, 'Distinctive Image Features from Scale-Invariant Keypoints,' International Journal of Comput. Vision, vol. 60, pp. 91-110, 2004.
[24] G. J. Burghouts and J.-M. Geusebroek, 'Performance evaluation of local colour invariants,' Comput. Vis. Image Underst., vol. 113, pp. 48-62, 2009.
[25] H.-P. Kriegel, P. Kr, #246, ger, and A. Zimek, 'Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering,' ACM Trans. Knowl. Discov. Data, vol. 3, pp. 1-58, 2009.
[26] T. Malisiewicz, A. Gupta, and A. A. Efros, 'Ensemble of exemplar-SVMs for object detection and beyond,' in IEEE International Conference on Computer Vision, 2011, pp. 89-96.
[27] C. H. Lampert, M. B. Blaschko, and T. Hofmann, 'Beyond sliding windows: Object localization by efficient subwindow search,' in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
[28] C. H. Lampert, M. B. Blaschko, and T. Hofmann, 'Efficient Subwindow Search: A Branch and Bound Framework for Object Localization,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 2129-2142, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64580-
dc.description.abstract行人偵測在智慧型車輛系統上一直都是重要的議題。在過去的文獻中,採用梯度方向直方圖為特徵的行人偵測是最為人所知且成功的。雖然如此,它仍然存在一些弱點,梯度方向直方圖在平坦和雜亂的影像上準確率容易受到影響,錯誤偵測很容易出現在這些區域上。為了加強最後偵測的結果,在本篇論文中提出了一個以基於影像強度比較的特徵,稱為Local Oriented Pattern (LOP) 去補足平坦與雜亂影像的判斷。LOP主要的包含兩個資訊:為影像材質與表現強度。藉由將影像中的每個像素轉換成圖形與強度,去統計小區域影像中的變化與分布。在行人偵測實驗中,可以看到LOP相對於梯度方向是更精簡與有效率的。另外在偵測器學習上面,本研究也提出一個新的學習策略,在不改變偵測器效能的情況下,可以使用更少的記憶體與時間去完成訓練一個偵測器,對於後續的實驗與研究上都有實質的幫助。
行人偵測上另一個重要的議題是行人的外觀變化很大,常見的行人姿勢包括行走、跑步與騎乘動作,這些由於姿勢的變化造成外觀的不同會影響到學習演算的成效,要找到共有的特徵會更為困難。為了要達到更好的效能,提出一個樣本為基礎的分類的演算,將訓練的資料的行人動作做分類,資料越小越紮實將有助於演算法的學習。採用誤差修正碼 (Error Correcting Output Code, ECOC) 為去訓練出最後多類別的最終偵測器,ECOC可以結合多的線性偵測器去達到非線性的決策曲面,進而提升學習的結果。最後結合所提出的LOP與ECOC搭配支持向量機去建構最終的分類器。
zh_TW
dc.description.abstractPedestrian detection is an important part of intelligent transportation systems. In the literature, the use of Histogram of Oriented Gradients (HOG) feature for pedestrian detection is well known for its good performance, but there are still some false detections appearing in the cases with flat area or clustered background. To deal with the false positive problems, in this research work we develop a new feature which is based on local intensity comparison, called Local Oriented Pattern (LOP). The idea of LOP is to encode the saliency of image and textural information of local area, which describing how different the pixel intensities are distributed within a region. Each pixel is represented as a pattern and its magnitude. It is shown that the special characteristics of LOP feature are “small” and “efficiency” relative to HOG. We also present a training scheme that can be applied to a huge database for training a detector. Such training scheme can reduce the number of hard samples during bootstrap training. Using our training scheme can save the memory as well as the training time for training a detector.
Another issue of pedestrian detection is that the human posture changes when the person in different states of walking, running or riding. In addition, different viewpoints caused by moving camera also produce different human appearances. To achieve higher detection rate in the intra-class variation problem, we propose an exemplar-based clustering algorithm to separate the training data into small and compact set. Moreover, the employed Error Correcting Output Code (ECOC) method constructs a nonlinear classification boundary that can discriminate the pedestrian from negative samples. We use ECOC to train multiple base classifiers with LOP feature and linear Support Vector Machine (SVM).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:55:53Z (GMT). No. of bitstreams: 1
ntu-101-R99922085-1.pdf: 2545463 bytes, checksum: 15ca2d46bf62019a87df57e937107623 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 ii
誌謝 iii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Challenges 2
1.3 Related work 4
1.4 Contribution 6
1.5 Thesis organization 7
Chapter 2 Preliminaries 9
2.1 Support Vector Machine (SVM) 9
2.1.1 Objective of SVM 9
2.1.2 Linear SVM 11
2.1.3 Soft Margin 13
2.2 Error Correcting Output Code (ECOC) 14
2.2.1 Error-Correcting Code Design 15
2.2.2 Classification Decisions 16
2.3 Histogram of Oriented Gradient (HOG) 17
2.3.1 HOG Descriptor 18
2.3.2 HOG Feature Encoding 19
Chapter 3 Histogram Based Encoding of Images 20
3.1 Comparison of Granules (CoG) 21
3.1.1 CoG Descriptor 21
3.1.2 Conclusion of HOG and CoG 23
3.2 Local Oriented Pattern (LOP) 25
3.2.1 Overview of LOP 25
3.2.2 LOP Feature Encoding 27
3.3 Classifier Learning 29
3.3.1 Classifier Learning 29
3.3.2 Multi-Stage Negative Sample Finding 30
Chapter 4 Subclass Classification for Human Detection 32
4.1 Exemplar-Based Clustering 33
4.1.1 High Dimensional Data Clustering 34
4.1.2 Exemplar-based Feature Selection 35
4.1.3 Exemplar-based Data Clustering 36
4.2 Subclass Classification using ECOC 37
4.2.1 ECOC Matrix Construction 38
4.2.2 Base Classifier Learning 39
4.2.3 Detection by ECOC 40
Chapter 5 Human Detection in Image 41
5.1 Overview of Detection System 41
5.2 Object Generation 42
5.2.1 Candidate Generation 43
5.2.2 Parameter setting for Candidate Generation 45
5.2.3 Classification of Candidate 47
5.3 Refinement of Detection Result 47
5.3.1 Non-maximum suppression 48
5.3.2 Tracking 50
Chapter 6 Experimental Result 52
6.1 Environment Setting 53
6.2 Training Databases 53
6.3 Experiment Results of LOP 54
6.3.1 Performance on INRAI Dataset 54
6.3.2 Performance on NTU Daytime Pedestrian Dataset 55
6.3.3 Hard Negative Finding 58
6.3.4 False Positive of HOG and LOP 59
6.4 Experimental Results of Subclass Classifier 60
6.4.1 Performance of Different Subclass Number 60
6.4.2 Performance with HOG-LOP feature 61
Chapter 7 Conclusion 63
REFERENCE 65
dc.language.isoen
dc.title不受內部類影響之行人偵測zh_TW
dc.titleHuman Detection: Insensitive to intra-class variationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor蕭培墉(Pei-Yung Hsiao)
dc.contributor.oralexamcommittee傅楸善(Chiou-Shann Fuh),黃世勳(Shih-Shinh Huang),方瓊瑤(Chiung-Yao Fang)
dc.subject.keyword行人偵測,材質資訊,類內部變化,zh_TW
dc.subject.keywordpedestrian detection,textural information,within-class variation,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2012-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved