Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64563
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學一
dc.contributor.authorCheng-Wei Leeen
dc.contributor.author李政緯zh_TW
dc.date.accessioned2021-06-16T17:54:46Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-12
dc.identifier.citation[1] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and R. E. Wilber. Geometric applications
of a matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987.
[2] M. J. Atallah and S. R. Kosaraju. An efficient parallel algorithm for the row minima of a
totally monotone matrix. Journal of Algorithms, 13(3):394–413, 1992.
[3] S. Baswana, U. Lath, and A. S. Mehta. Single source distance oracle for planar digraphs
avoiding a failed node or link. In Proceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 223–232, 2012.
[4] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related problems.
Journal of Computer and System Sciences, 65(1):38–72, 2002.
[5] A. Bernstein. A nearly optimal algorithm for approximating replacement paths and k
shortest simple paths in general graphs. In Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 742–755, 2010.
[6] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices and
edges. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pages 101–110, 2009.
[7] A. M. Bhosle. Improved algorithms for replacement paths problems in restricted graphs.
Operations Research Letters, 33(5):459–466, 2005.
[8] P. G. Bradford and K. Reinert. Lower bounds for row minima searching. In F. Meyer
auf der Heide and B. Monien, editors, Proceedings of the 23rd International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 1099,
pages 454–465. Springer, 1996.
[9] T. H. Byers and M. S. Waterman. Determining all optimal and near-optimal solutions
when solving shortest path problems by dynamic programming. Operations Research,
32(6):1381–1384, 1984.
[10] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. f -sensitivity distance oracles and
routing schemes. Algorithmica, 63:861–882, 2012.
[11] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.
[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 3rd edition, 2009.
[13] Y. Emek, D. Peleg, and L. Roditty. A near-linear-time algorithm for computing replacement
paths in planar directed graphs. ACM Transactions on Algorithms, 6(4):64.1–64.13,
2010.
[14] J. Erickson and A. Nayyeri. Computing replacement paths in surface embedded graphs.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1347–1354, 2011.
[15] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and
the replacement paths problems. Information Processing Letters, 109(7):352–355, 2009.
[16] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms
for planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.
[17] J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new algorithm
and its implementation. ACM Transactions on Algorithms, 3(4):45.1–45.19, 2007.
[18] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge worth? In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science,
pages 252–259, 2001.
[19] J. Hershberger, S. Suri, and A. M. Bhosle. On the difficulty of some shortest path problems.
ACM Transactions on Algorithms, 3(1):5.1–5.15, 2007.
[20] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in monge
matrices and monge partial matrices, and their applications. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 338–355, 2012.
[21] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time bounds for
all-pairs shortest paths. SIAM Journal on Computing, 22(6):1199–1217, 1993.
[22] P. N. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs with
negative lengths: A linear-space O(nlog2 n)-time algorithm. ACM Transactions on Algorithms,
6(2):30.1–30.18, 2010.
[23] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem.
Operations Research Letters, 8(4):223–227, 1989.
[24] S. Mozes and C. Wulff-Nilsen. Shortest paths in planar graphs with real lengths in
O(nlog2 n=log logn) time. In M. de Berg and U. Meyer, editors, Proceedings of the 18th
Annual European Symposium on Algorithms, Lecture Notes in Computer Science 6347,
pages 206–217. Springer, 2010.
[25] K. Nakano and S. Olariu. An efficient algorithm for row minima computations on basic reconfigurable
meshes. IEEE Transactions on Parallel and Distributed Systems, 9(6):561–569, 1998.
[26] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital edge of
a shortest path. Information Processing Letters, 79(2):81–85, 2001.
[27] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path.
Theoretical Computer Science, 296(1):167–177, 2003.
[28] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proceedings of the 31st
Annual ACM Symposium on Theory of Computing, pages 129–140, 1999.
[29] S. Pettie. Single-source shortest paths. In M.-Y. Kao, editor, Encyclopedia of Algorithms,
pages 1–99. Springer, 2008.
[30] R. Raman and U. Vishkin. Optimal randomized parallel algorithms for computing the
row maxima of a totally monotone matrix. In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 613–621, 1994.
[31] L. Roditty. On the k-simple shortest paths problem in weighted directed graphs. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
920–928, 2007.
[32] L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science 3580, pages 249–260. Springer, 2005.
[33] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-closed graph
classes, with an application to Steiner tree approximation. Discrete Applied Mathematics,
157(4):673–684, 2009.
[34] M. Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. Journal of the ACM, 46(3):362–394, 1999.
[35] M. Thorup. Floats, integers, and single source shortest paths. Journal of Algorithms,
35(2):189–201, 2000.
[36] V. Vassilevska Williams. Faster replacement paths. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1337–1346, 2011.
33
[37] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 887–
898, 2012.
[38] O. Weimann and R. Yuster. Replacement paths via fast matrix multiplication. In Proceedings
of the 51st Annual IEEE Symposium on Foundations of Computer Science, pages
655–662, 2010.
[39] O. Weimann and R. Yuster. Replacement paths and distance sensitivity oracles via fast
matrix multiplication. ACM Transactions on Algorithms, to appear.
[40] C. Wulff-Nilsen. Solving the replacement paths problem for planar directed graphs in
O(nlogn) time. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 756–765, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64563-
dc.description.abstractMatrix M is k-compact if the finite entries of each column of M consist of k or less intervals of identical numbers. We give the first known O(n+m)-time algorithm for computing the row minima of any O(1)-compact n m matrix. Our algorithm
yields the first O(n+m)-time reduction from the replacement-paths problem on an n-node m-edge undirected graph(respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)-node O(m)-edge undirected
graph (respectively, directed acyclic graph). That is, we prove that the replacementpaths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions yield the first known O(n+m)-time algorithms for the replacement-paths problem on the following classes of n-node m-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:54:46Z (GMT). No. of bitstreams: 1
ntu-101-R99922035-1.pdf: 6089849 bytes, checksum: 8e0f9f0d664f7c04a4af97c65ac626b6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 A reduction for the edge-avoiding version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 A reduction for the node-avoiding version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Computing row minima of a compact matrix in linear time . . . . . . . . . . . . . . . . . . . 16
3.1 A near-linear-time algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 A linear-time algorithm for matrices with very few rows. . . . . . . . . . . . . . . . . . . . . 21
3.3 Proving Lemma 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
dc.language.isoen
dc.subject列最小值zh_TW
dc.subject替代路徑zh_TW
dc.subject緊密矩陣zh_TW
dc.subjectReplacement pathsen
dc.subjectRow minimaen
dc.subjectCompact matrixen
dc.title利用緊密矩陣的列最小值來尋找替代路徑zh_TW
dc.titleReplacement Paths via Row Minima of Compact Matricesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大為,陳和麟,劉邦鋒
dc.subject.keyword替代路徑,列最小值,緊密矩陣,zh_TW
dc.subject.keywordReplacement paths,Row minima,Compact matrix,en
dc.relation.page34
dc.rights.note有償授權
dc.date.accepted2012-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved