Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64549
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇炫榮(Hsuan-Jung Su)
dc.contributor.authorYi-Ting Houen
dc.contributor.author侯亦庭zh_TW
dc.date.accessioned2021-06-16T17:53:55Z-
dc.date.available2020-03-03
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-26
dc.identifier.citation[1] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE transactions on wireless communications, vol. 13, no. 3, pp. 1499–1513, 2014.
[2] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale MIMO systems,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 2929–2933.
[3] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–846, 2014.
[4] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE transactions on wireless communications, vol. 14, no. 11, pp. 6481–6494, 2015.
[5] C.-R. Tsai, Y.-H. Liu, and A.-Y. Wu, “Efficient compressive channel estimation for millimeter-wave large-scale antenna systems,” IEEE Transactions on Signal Processing, vol. 66, no. 9, pp. 2414–2428, 2018.
[6] A. Mezghani and L. Swindlehurst, “Blind estimation of sparse multiuser massive MIMO channels,” in WSA 2017; 21th International ITG Workshop on Smart Antennas. VDE, 2017, pp. 1–5.
[7] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–280, 1986.
[8] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010.
[9] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 806–811, 1985.
[10] P. Pal and P. Vaidyanathan, “Correlation-aware techniques for sparse support recovery,” in 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012, pp. 53–56.
[11] A. Maleki, L. Anitori, Z. Yang, and R. G. Baraniuk, “Asymptotic analysis of complex lasso via complex approximate message passing (CAMP),” IEEE Transactions on Information Theory, vol. 59, no. 7, pp. 4290–4308, 2013.
[12] D. Neumann, M. Joham, and W. Utschick, “Channel estimation in massive MIMO systems,” arXiv preprint arXiv:1503.08691, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64549-
dc.description.abstract毫米波為第五代行動通訊中一重要技術,它使我們有更高的資料傳輸率以及更大的可使用頻寬。然而,由於毫米波的超高頻率特性使其受限於極高的途徑損失以及比起傳統無線通訊更少的路徑數目。熱門的解決辦法為採用大規模多輸入多輸出及波束形成技術。而我們需要通道狀態資訊才能利用數種已存的電波束形成器及結合器設計演算法。在絕大多數的通道估測研究中,研究者們傾向採用領航序列來增加估測的準確性,但這會降低資料傳輸率。因此我們試圖提出一個可以避免使用領航序列以及維持可接受的估測準確率的新穎方法。我們進一步地將這個問題分為兩種情況。第一種情況是單一路徑,也就是每一個使用者到基地台的通道都為只有一個。多訊號分類演算法以及巢狀陣列將被用於此情況。而另一種情況則為多路徑。我們利用壓縮感知以及巢狀陣列來估測通道。zh_TW
dc.description.abstractMillimeter wave (mmWave) cellular communication system is a promising technology in the fifth-generation communication. Because of the ultra-high frequency, it suffers from forbiddingly high path loss and the paths from users to the base station (BS) are much fewer than the traditional wireless communications systems. It is popular to exploit massive multi-input multi-output (MIMO) systems and beamforming techniques to deal with this problem. The pilot-based channel estimation algorithms become more inefficient when the number of antennas increases. Therefore, we propose a novel method that avoids using the pilot sequence. We first estimate the user number by the rank of the correlation matrix of the received signals. Then, the compressed sensing technique is utilized to estimate the direction-of-arrival (DOA) of each path. Eventually, we take advantage of the special structure of the fading matrix to eliminate the spurious DOAs and estimate the fading gain of each path at the same time. A special case that the available path from each user to the base station (BS) is one is also discussed, and we exploit multiple signal classification (MUSIC) algorithm to reduce complexity. In both cases, a non-uniform antenna array called the nested array is utilized to increase the array aperture.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:53:55Z (GMT). No. of bitstreams: 1
ntu-109-R06942096-1.pdf: 859548 bytes, checksum: 5fc1761697d42cd070e86a249ad2a117 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 System Model and Problem Formulation 6
2.1 MUSIC Algorithm and Spatial Smoothing Technique . . . . . 6
2.1.1 DOA Estimation with Uncorrelated Users . . . . . . . 7
2.1.2 DOA estimation problem with correlated users . . . . . 8
2.2 Nested Array and the DOA Estimation . . . . . . . . . . . . . 9
2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 13
3 Proposed Method for Blind Millimeter Channel Estimation 14
3.1 Blind Millimeter Wave Channel estimation for Multi-path Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 User Number Estimation . . . . . . . . . . . . . . . . . 15
3.1.2 Direction-Of-Arrival and Fading Gain Estimation . . . 17
3.1.3 The Effect of Phase Ambiguity . . . . . . . . . . . . . 20
3.2 Blind Millimeter Wave Channel estimation for Single Path
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Direction of Arrival Estimation Using the Nested Array
and MUSIC Algorithm . . . . . . . . . . . . . . . . . . 22
3.2.2 Fading Gain Estimation Using the Nested Array and
MUSIC Algorithm . . . . . . . . . . . . . . . . . . . . 24
3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 25
4 Simulation Results
4.1 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Multi-path Scenario . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Single Path Scenario . . . . . . . . . . . . . . . . . . . . . . . 29
5 Conclusions 32
Bibliography 33
dc.language.isoen
dc.subject毫米波zh_TW
dc.subject通道估測zh_TW
dc.subject壓縮感知zh_TW
dc.subject大規模多輸入多輸出zh_TW
dc.subject巢狀陣列zh_TW
dc.subject多訊號分類演算法zh_TW
dc.subjectCompressed Sensingen
dc.subjectMillimeter Waveen
dc.subjectNested Arrayen
dc.subjectMUSIC Algorithmen
dc.subjectChannel Estimationen
dc.subjectMassive MIMOen
dc.title藉由多重訊號分類演算法及壓縮感知做盲通道估測zh_TW
dc.titleBlind Channel Estimation via MUSIC Algorithm and Compressed Sensingen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林澤(Che Lin),劉俊麟(Chun-Lin Liu)
dc.subject.keyword大規模多輸入多輸出,毫米波,巢狀陣列,多訊號分類演算法,通道估測,壓縮感知,zh_TW
dc.subject.keywordMassive MIMO,Millimeter Wave,Nested Array,MUSIC Algorithm,Channel Estimation,Compressed Sensing,en
dc.relation.page35
dc.identifier.doi10.6342/NTU202000601
dc.rights.note有償授權
dc.date.accepted2020-02-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
839.4 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved