請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64524完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
| dc.contributor.author | Tzu-Chia Huang | en |
| dc.contributor.author | 黃子佳 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:52:23Z | - |
| dc.date.available | 2017-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | 1. Perez, M. D.; Borek, C.; Forrest, S. R.; Thompson, M. E., Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices. J Am Chem Soc 2009, 131 (26), 9281-9286.
2. Roncali, J., Synthetic principles for bandgap control in linear pi-conjugated systems. Chem Rev 1997, 97 (1), 173-205. 3. Boudreault, P. L. T.; Najari, A.; Leclerc, M., Processable Low-Bandgap Polymers for Photovoltaic Applications. Chem Mater 2011, 23 (3), 456-469. 4. (a) Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.; Zhang, F.; Andersson, M. R.; Inganas, O., A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility. Adv Funct Mater 2007, 17 (18), 3836-3842; (b) Zhang, F. L.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv Funct Mater 2006, 16 (5), 667-674; (c) Andersson, L. M.; Zhang, F. L.; Inganas, O., Stoichiometry, mobility, and performance in bulk heterojunction solar cells. Appl Phys Lett 2007, 91 (7); (d) Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R., High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 2003, 15 (12), 988-+; (e) Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse, M. M., Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Appl Phys Lett 2007, 90 (14). 5. Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C., Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 2009, 1 (8), 657-661. 6. Zhou, H. X.; Yang, L. Q.; Stoneking, S.; You, W., A Weak Donor-Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. Acs Appl Mater Inter 2010, 2 (5), 1377-1383. 7. Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Adv Mater 2006, 18 (6), 789-+. 8. Price, S. C.; Stuart, A. C.; You, W., Polycyclic Aromatics with Flanking Thiophenes: Tuning Energy Level and Band Gap of Conjugated Polymers for Bulk Heterojunction Photovoltaics. Macromolecules 2010, 43 (2), 797-804. 9. Westenhoff, S.; Howard, I. A.; Hodgkiss, J. M.; Kirov, K. R.; Bronstein, H. A.; Williams, C. K.; Greenham, N. C.; Friend, R. H., Charge recombination in organic photovoltaic devices with high open-circuit voltages. J Am Chem Soc 2008, 130 (41), 13653-13658. 10. (a) Wang, Q. F.; Takita, R.; Kikuzaki, Y.; Ozawa, F., Palladium-Catalyzed Dehydrohalogenative Polycondensation of 2-Bromo-3-hexylthiophene: An Efficient Approach to Head-to-Tail Poly(3-hexylthiophene). J Am Chem Soc 2010, 132 (33), 11420-11421; (b) Fujinami, Y.; Kuwabara, J.; Lu, W.; Hayashi, H.; Kanbara, T., Synthesis of Thiophene- and Bithiophene-Based Alternating Copolymers via Pd-Catalyzed Direct C–H Arylation. ACS Macro Letters 2011, 1 (1), 67-70; (c) Zhang, Y.; Zou, J.; Yip, H.-L.; Sun, Y.; Davies, J. A.; Chen, K.-S.; Acton, O.; Jen, A. K. Y., Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. J Mater Chem 2011, 21 (11), 3895-3902; (d) Liu, F.; Gu, Y.; Wang, C.; Zhao, W.; Chen, D.; Briseno, A. L.; Russell, T. P., Efficient Polymer Solar Cells Based on a Low Bandgap Semi-crystalline DPP Polymer-PCBM Blends. Adv Mater 2012, 24 (29), 3947-3951. 11. Yu, J.-Q.; Ackermann, L.; Shi, Z., C-H activation. Springer: Heidelberg ; New York, 2010; p xx, 384 p. 12. Stalder, R.; Mei, J.; Reynolds, J. R., Isoindigo-Based Donor−Acceptor Conjugated Polymers. Macromolecules 2010, 43 (20), 8348-8352. 13. (a) Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J., High-Performance Air-Stable Organic Field-Effect Transistors: Isoindigo-Based Conjugated Polymers. J Am Chem Soc 2011, 133 (16), 6099-6101; (b) Ma, Z. F.; Wang, E. G.; Vandewal, K.; Andersson, M. R.; Zhang, F. L., Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor. Appl Phys Lett 2011, 99 (14); (c) Wang, E.; Ma, Z.; Zhang, Z.; Vandewal, K.; Henriksson, P.; Inganas, O.; Zhang, F.; Andersson, M. R., An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. J Am Chem Soc 2011, 133 (36), 14244-14247; (d) Wang, E. G.; Ma, Z. F.; Zhang, Z.; Henriksson, P.; Inganas, O.; Zhang, F. L.; Andersson, M. R., An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chem Commun 2011, 47 (17), 4908-4910; (e) Zhang, G.; Fu, Y.; Xie, Z.; Zhang, Q., Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules 2011, 44 (6), 1414-1420; (f) Zou, Y. P.; Liu, B.; Peng, B.; Zhao, B.; Huang, K. L.; He, Y. H.; Pan, C. Y., Low bandgap isoindigo-based copolymers: design, synthesis and photovoltaic applications. Polym Chem-Uk 2011, 2 (5), 1156-1162; (g) Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I., A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chem Commun 2012, 48 (33), 3939-3941; (h) Ma, Z.; Wang, E.; Jarvid, M. E.; Henriksson, P.; Inganas, O.; Zhang, F.; Andersson, M. R., Synthesis and characterization of benzodithiophene-isoindigo polymers for solar cells. J Mater Chem 2012, 22 (5), 2306-2314; (i) Stalder, R.; Grand, C.; Subbiah, J.; So, F.; Reynolds, J. R., An isoindigo and dithieno[3,2-b:2[prime or minute],3[prime or minute]-d]silole copolymer for polymer solar cells. Polym Chem-Uk 2012; (j) Mei, J. G.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. A., Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors. J Am Chem Soc 2011, 133 (50), 20130-20133. 14. Yang, L.; Zhou, H.; You, W., Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer-Fullerene Solar Cells. The Journal of Physical Chemistry C 2010, 114 (39), 16793-16800. 15. Biniek, L.; Fall, S.; Chochos, C. L.; Anokhin, D. V.; Ivanov, D. A.; Leclerc, N.; Leveque, P.; Heiser, T., Impact of the Alkyl Side Chains on the Optoelectronic Properties of a Series of Photovoltaic Low-Band-Gap Copolymers. Macromolecules 2010, 43 (23), 9779-9786. 16. Jeffries, A. T.; Moore, K. C.; Ondeyka, D. M.; Springsteen, A. W.; Macdowell, D. W. H., A Study of Some Thiophene Analogs of Glycolic Acid. Journal of Organic Chemistry 1981, 46 (14), 2885-2889. 17. Park, J. H.; Lee, B. Y., Short and Efficient Synthesis of Cyclopentadithiophene and Its Dialkylated Product. B Kor Chem Soc 2010, 31 (4), 1064-1066. 18. Coppo, P.; Cupertino, D. C.; Yeates, S. G.; Turner, M. L., Synthetic Routes to Solution-Processable Polycyclopentadithiophenes. Macromolecules 2003, 36 (8), 2705-2711. 19. Reynolds, J. R.; Mei, J. G.; Graham, K. R.; Stalder, R., Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters 2010, 12 (4), 660-663. 20. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv Mater 2011, 23 (20), 2367-2371. 21. Bundgaard, E.; Krebs, F. C., Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole). Macromolecules 2006, 39 (8), 2823-2831. 22. Chen, H.-Y.; Hou, J.; Hayden, A. E.; Yang, H.; Houk, K. N.; Yang, Y., Silicon Atom Substitution Enhances Interchain Packing in a Thiophene-Based Polymer System. Adv Mater 2010, 22 (3), 371-375. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64524 | - |
| dc.description.abstract | 由於isoindigo是一種可再生的材料且可從植物中獲得取得,使得isoindigo系列的導電高分子在近年來引起來廣泛的研究興趣。為了探討側鏈效應對於導電高分子在高分子太陽能電池的性質影響,在這項工作中,我們利用施蒂勒偶和反應(the Stille cross-coupling reaction)合成了一系列以cyclopentadithiophene(CPDT)為弱電子予體,isoindigo(I)為強電子受體的可溶性低能隙高分子 (PCI),並分別接上兩種側鏈,辛基 (octyl,8)和2 -乙基己基 (2-ethylhexyl,e)。我們將側鏈效應對於此系列導電高分子的光電特性,光伏元件表現和薄膜形態的影響分別進行了探討。當將此系列的高分子上的側鏈從直鏈改變成支鏈,其吸收光譜最高有超過30奈米的藍位移,能階分布和能隙變化最高超過0.2電子伏特。而當改變側鏈形狀時,可觀察到不同的富勒烯優化比例。當高分子的isoindigo單元上的側鏈為直鏈時,富勒烯比例為66 %,而當其為支鏈時則為50 %。我們將側鏈效應對於此系列高分子的光伏元件效率表現做了一系列的定量分析。此分析將暗電流的指數前因子Jso─在聚合物/富勒烯的共混物分子間的相互作用關係─分別與開路電壓(Voc)與短路電流(Jsc)之間的關係進行了定量證明,得到Jso分別與Voc呈負相關,與Jsc則呈正相關的關係。並利用此關係解釋側鏈改質對於光伏元件性質表現的影響。當高分子上的側鏈為直鏈時,可促進聚合物/富勒烯的共混物分子間的相互作用,增加Jso,而當高分子上的側鏈為支鏈時則反之。因此,此系列高分子中,PCeI8的側鏈設計,CPDT單元上為支鏈,isoindigo單元上為直鏈,可優化Jso得到最佳值,進而在Voc與Jsc之間取得平衡,得到目前最高的能源轉換效率,3.6%。此結果可再透過元件的製程優化而提升。 | zh_TW |
| dc.description.abstract | Isoindigo based conducting polymers have attracted extensive interests for polymer solar cell application due to the isoindigo is a renewable raw material and available from plant. We have synthesized a series of soluble low band gap isoindigo based polymers (PCI) with cyclopentadithiophene (CPDT) as weak donor unit and isoindigo (I) as strong acceptor unit, decorated with two kinds of side chains, octyl and 2-ethylhexyl, via the Stille cross-coupling reaction. The side chain effect of this conducting polymer on the performance of polymer solar cell has been quantitatively investigated. By changing the side chain of polymers from linear to branch, the λmax of absorption can be blue-shifted for more than 30 nm, the energy level and electronic band gap can be varied by more than 0.2 eV. In addition, the weight ratio with fullerene of optimized efficiency varies with the shape of side chains. Higher ratio (66 %) of fullerene could be observed from polymers with linear side chain on isoindigo unit whereas low ratio of fullerene (50%) was observed in polymers with branched side chains on isoindigo unit. The relationships of pre-exponential dark current term Jso, which accounts for the intermolecular interactions in the polymer/PCBM blends, to Voc and Jsc respectively, were quantitatively determined. The Voc is negatively proportional to Jso, whereas Jsc is positively proportional to Jso. The relationships were applied to the elaboration of the impact on photovoltaic performance done by side chain. The Jso could be improved when linear side chains are attached to polymers but weakened when branched side chains are attached. Therefore, the side chain design of polymer PCeI8, with branched side chains on CPDT units and linear side chains on isoindigo units, could optimize Jso to achieve the balance between Voc and Jsc and thus results in the highest power conversion efficiency (PCE) of 3.6 % by far. The power conversion of efficiency of this type polymer could be further improved by optimizing the fabrication condition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:52:23Z (GMT). No. of bitstreams: 1 ntu-101-R99549025-1.pdf: 2532287 bytes, checksum: f013ffd332883791f2de74a73434c779 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Content v List of Figures vii List of Tables ix List of Schemes x Chapter 1 Introduction 1 1.1 Polymer solar cell 1 1.2 Donor-acceptor Conjugated Polymers 7 1.2.1 Low Band Gap Polymers 7 1.2.2 Donor-acceptor System 10 1.2.3 Common Used Synthetic Methods of D-A Conjugated Polymers 14 1.3 Isoindigo Based Donor-acceptor Conjugated Polymers 18 1.4 Research Objectives 22 Chapter 2 Side Chain Effect on Poly(cyclopentadithiophene-a-isoindigo): Synthesis, Properties, Photovoltaic Performance 23 2.1 Literature Reviews 23 2.2 Experimental Methods 26 2.2.1 Chemicals 26 2.2.2 Synthesis of Monomers and Polymers 29 2.2.3 Instruments and Measurements 35 2.3 Results and Discussion 37 2.3.1 Synthesis of Monomers and Polymers 37 2.3.2 Optoelectronic Properties 39 2.3.3 Thin Film Morphology and Photovoltaic Properties 47 2.3.4 Quantitative Analysis 53 2.4 Conclusions 58 Chapter 3 Recommendations 60 References 61 | |
| dc.language.iso | en | |
| dc.subject | 異靛藍 | zh_TW |
| dc.subject | 電子予體-受體共軛高分子 | zh_TW |
| dc.subject | 低能隙 | zh_TW |
| dc.subject | 側鏈效應 | zh_TW |
| dc.subject | 高分子太陽能電池 | zh_TW |
| dc.subject | side chain effect | en |
| dc.subject | donor-acceptor conjugated polymer | en |
| dc.subject | low band gap | en |
| dc.subject | polymer solar cell | en |
| dc.subject | isoindigo | en |
| dc.title | 異靛藍電子予體-受體共軛高分子之合成、性質及其太陽能電池應用研究 | zh_TW |
| dc.title | Isoindigo Based Donor-Acceptor Conjugated Polymers: Synthesis, Properties and Solar Cell Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡豐羽(Feng-Yu Tsai),趙基揚(Chi-Yang Chao),邱文英(Wen-Yen Chiu),王立義(Lee-Yih Wang) | |
| dc.subject.keyword | 異靛藍,電子予體-受體共軛高分子,低能隙,側鏈效應,高分子太陽能電池, | zh_TW |
| dc.subject.keyword | isoindigo,donor-acceptor conjugated polymer,side chain effect,low band gap,polymer solar cell, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
