請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64522
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉秀慧(Shiou- Hwei Yeh) | |
dc.contributor.author | Tzu- Jung Chen | en |
dc.contributor.author | 陳姿蓉 | zh_TW |
dc.date.accessioned | 2021-06-16T17:52:15Z | - |
dc.date.available | 2017-09-19 | |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-13 | |
dc.identifier.citation | [1] T. Sato, S. Irie, S. Kitada, and J. C. Reed, 'FAP-1: a protein tyrosine phosphatase that associates with Fas,' Science, vol. 268, pp. 411-5, Apr 21 1995.
[2] F. Villa, M. Deak, G. B. Bloomberg, D. R. Alessi, and D. M. van Aalten, 'Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket,' J Biol Chem, vol. 280, pp. 8180-7, Mar 4 2005. [3] O. D. Abaan and J. A. Toretsky, 'PTPL1: a large phosphatase with a split personality,' Cancer Metastasis Rev, vol. 27, pp. 205-14, Jun 2008. [4] G. Bompard, M. Martin, C. Roy, F. Vignon, and G. Freiss, 'Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate,' J Cell Sci, vol. 116, pp. 2519-30, Jun 15 2003. [5] W. A. Kimber, M. Deak, A. R. Prescott, and D. R. Alessi, 'Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1,' Biochem J, vol. 376, pp. 525-35, Dec 1 2003. [6] K. Maekawa, N. Imagawa, A. Naito, S. Harada, O. Yoshie, and S. Takagi, 'Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats,' Biochem J, vol. 337 ( Pt 2), pp. 179-84, Jan 15 1999. [7] J. Saras, U. Engstrom, L. J. Gonez, and C. H. Heldin, 'Characterization of the interactions between PDZ domains of the protein-tyrosine phosphatase PTPL1 and the carboxyl-terminal tail of Fas,' Journal of Biological Chemistry, vol. 272, pp. 20979-20981, Aug 22 1997. [8] D. Lin, G. D. Gish, Z. Songyang, and T. Pawson, 'The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif,' J Biol Chem, vol. 274, pp. 3726-33, Feb 5 1999. [9] V. N. Ivanov, P. Lopez Bergami, G. Maulit, T. A. Sato, D. Sassoon, and Z. Ronai, 'FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface,' Mol Cell Biol, vol. 23, pp. 3623-35, May 2003. [10] V. N. Ivanov, Z. Ronai, and T. K. Hei, 'Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis,' J Biol Chem, vol. 281, pp. 1840-52, Jan 20 2006. [11] G. Bompard, C. Puech, C. Prebois, F. Vignon, and G. Freiss, 'Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells,' J Biol Chem, vol. 277, pp. 47861-9, Dec 6 2002. [12] M. Dromard, G. Bompard, M. Glondu-Lassis, C. Puech, D. Chalbos, and G. Freiss, 'The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation,' Cancer Res, vol. 67, pp. 6806-13, Jul 15 2007. [13] A. Palmer, M. Zimmer, K. S. Erdmann, V. Eulenburg, A. Porthin, R. Heumann, U. Deutsch, and R. Klein, 'EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase,' Mol Cell, vol. 9, pp. 725-37, Apr 2002. [14] M. Glondu-Lassis, M. Dromard, M. Lacroix-Triki, P. Nirde, C. Puech, D. Knani, D. Chalbos, and G. Freiss, 'PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase,' Cancer Res, vol. 70, pp. 5116-26, Jun 15 2010. [15] Z. Wang, D. Shen, D. W. Parsons, A. Bardelli, J. Sager, S. Szabo, J. Ptak, N. Silliman, B. A. Peters, M. S. van der Heijden, G. Parmigiani, H. Yan, T. L. Wang, G. Riggins, S. M. Powell, J. K. Willson, S. Markowitz, K. W. Kinzler, B. Vogelstein, and V. E. Velculescu, 'Mutational analysis of the tyrosine phosphatome in colorectal cancers,' Science, vol. 304, pp. 1164-6, May 21 2004. [16] S. H. Yeh, D. C. Wu, C. Y. Tsai, T. J. Kuo, W. C. Yu, Y. S. Chang, C. L. Chen, C. F. Chang, D. S. Chen, and P. J. Chen, 'Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma,' Clin Cancer Res, vol. 12, pp. 1097-108, Feb 15 2006. [17] M. B. Omary, N. O. Ku, G. Z. Tao, D. M. Toivola, and J. Liao, ''Heads and tails' of intermediate filament phosphorylation: multiple sites and functional insights,' Trends in Biochemical Sciences, vol. 31, pp. 383-394, Jul 2006. [18] E. Fuchs and K. Weber, 'Intermediate Filaments - Structure, Dynamics, Function, and Disease,' Annual Review of Biochemistry, vol. 63, pp. 345-382, 1994. [19] H. H. Bragulla and D. G. Homberger, 'Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia,' J Anat, vol. 214, pp. 516-59, Apr 2009. [20] R. Moll, M. Divo, and L. Langbein, 'The human keratins: biology and pathology,' Histochem Cell Biol, vol. 129, pp. 705-33, Jun 2008. [21] M. B. Omary, N. O. Ku, J. Liao, and D. Price, 'Keratin modifications and solubility properties in epithelial cells and in vitro,' Subcell Biochem, vol. 31, pp. 105-40, 1998. [22] C. F. Chou, C. L. Riopel, L. S. Rott, and M. B. Omary, 'A Significant Soluble Keratin Fraction in Simple Epithelial-Cells - Lack of an Apparent Phosphorylation and Glycosylation Role in Keratin Solubility,' J Cell Sci, vol. 105, pp. 433-444, Jun 1993. [23] P. Strnad, C. Stumptner, K. Zatloukal, and H. Denk, 'Intermediate filament cytoskeleton of the liver in health and disease,' Histochem Cell Biol, vol. 129, pp. 735-49, Jun 2008. [24] N. O. Ku and M. B. Omary, 'A disease- and phosphorylation-related nonmechanical function for keratin 8,' J Cell Biol, vol. 174, pp. 115-25, Jul 3 2006. [25] M. B. Omary, N. O. Ku, and D. M. Toivola, 'Keratins: guardians of the liver,' Hepatology, vol. 35, pp. 251-7, Feb 2002. [26] P. A. Coulombe and M. B. Omary, ''Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments,' Curr Opin Cell Biol, vol. 14, pp. 110-22, Feb 2002. [27] N. O. Ku, R. Gish, T. L. Wright, and M. B. Omary, 'Keratin 8 mutations in patients with cryptogenic liver disease,' N Engl J Med, vol. 344, pp. 1580-7, May 24 2001. [28] N. O. Ku, J. M. Darling, S. M. Krams, C. O. Esquivel, E. B. Keeffe, R. K. Sibley, Y. M. Lee, T. L. Wright, and M. B. Omary, 'Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies,' Proc Natl Acad Sci U S A, vol. 100, pp. 6063-8, May 13 2003. [29] D. M. Toivola, N. O. Ku, E. Z. Resurreccion, D. R. Nelson, T. L. Wright, and M. B. Omary, 'Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease,' Hepatology, vol. 40, pp. 459-66, Aug 2004. [30] N. O. Ku, P. Strnad, B. H. Zhong, G. Z. Tao, and M. B. Omary, 'Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies,' Hepatology, vol. 46, pp. 1639-49, Nov 2007. [31] L. Feng, X. Zhou, J. Liao, and M. B. Omary, 'Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway,' J Cell Sci, vol. 112 ( Pt 13), pp. 2081-90, Jul 1999. [32] N. O. Ku, S. Azhar, and M. B. Omary, 'Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization - Modulation by a keratin 1-like disease-causing mutation,' Journal of Biological Chemistry, vol. 277, pp. 10775-10782, Mar 29 2002. [33] N. O. Ku, J. Liao, and M. B. Omary, 'Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins,' Embo Journal, vol. 17, pp. 1892-1906, Apr 1 1998. [34] N. O. Ku and M. B. Omary, 'Keratins turn over by ubiquitination in a phosphorylation-modulated fashion,' J Cell Biol, vol. 149, pp. 547-52, May 1 2000. [35] N. O. Ku and M. B. Omary, 'Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation,' Journal of Biological Chemistry, vol. 276, pp. 26792-26798, Jul 20 2001. [36] R. Kwan, S. Hanada, M. Harada, P. Strnad, D. H. Li, and M. B. Omary, 'Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory-Denk body formation,' Faseb Journal, vol. 26, pp. 2318-26, Jun 2012. [37] K. Zatloukal, S. W. French, C. Stumptner, P. Strnad, M. Harada, D. M. Toivola, M. Cadrin, and M. B. Omary, 'From Mallory to Mallory-Denk bodies: what, how and why?,' Exp Cell Res, vol. 313, pp. 2033-49, Jun 10 2007. [38] P. Strnad, M. Harada, M. Siegel, R. A. Terkeltaub, R. M. Graham, C. Khosla, and M. B. Omary, 'Transglutaminase 2 regulates mallory body inclusion formation and injury-associated liver enlargement,' Gastroenterology, vol. 132, pp. 1515-26, Apr 2007. [39] C. Stumptner, A. Fuchsbichler, M. Lehner, K. Zatloukal, and H. Denk, 'Sequence of events in the assembly of Mallory body components in mouse liver: clues to the pathogenesis and significance of Mallory body formation,' Journal of Hepatology, vol. 34, pp. 665-675, May 2001. [40] P. Strnad, G. Z. Tao, P. So, K. Lau, J. Schilling, Y. Wei, J. Liao, and M. B. Omary, ''Toxic memory' via chaperone modification is a potential mechanism for rapid Mallory-Denk body reinduction,' Hepatology, vol. 48, pp. 931-42, Sep 2008. [41] I. Nakamichi, D. M. Toivola, P. Strnad, S. A. Michie, R. G. Oshima, H. Baribault, and M. B. Omary, 'Keratin 8 overexpression promotes mouse Mallory body formation,' J Cell Biol, vol. 171, pp. 931-7, Dec 19 2005. [42] M. Harada, P. Strnad, E. Z. Resurreccion, N. O. Ku, and M. B. Omary, 'Keratin 18 overexpression but not phosphorylation or filament organization blocks mouse Mallory body formation,' Hepatology, vol. 45, pp. 88-96, Jan 2007. [43] K. Zatloukal, C. Stumptner, M. Lehner, H. Denk, H. Baribault, L. G. Eshkind, and W. W. Franke, 'Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies,' American Journal of Pathology, vol. 156, pp. 1263-74, Apr 2000. [44] T. M. Magin, R. Schroder, S. Leitgeb, F. Wanninger, K. Zatloukal, C. Grund, and D. W. Melton, 'Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates,' J Cell Biol, vol. 140, pp. 1441-51, Mar 23 1998. [45] M. Harada, S. Hanada, D. M. Toivola, N. Ghori, and M. B. Omary, 'Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation,' Hepatology, vol. 47, pp. 2026-35, Jun 2008. [46] R. Kiraly, M. Demeny, and L. Fesus, 'Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein,' FEBS J, vol. 278, pp. 4717-39, Dec 2011. [47] L. Fesus and M. Piacentini, 'Transglutaminase 2: an enigmatic enzyme with diverse functions,' Trends Biochem Sci, vol. 27, pp. 534-9, Oct 2002. [48] G. E. Begg, L. Carrington, P. H. Stokes, J. M. Matthews, M. A. Wouters, A. Husain, L. Lorand, S. E. Iismaa, and R. M. Graham, 'Mechanism of allosteric regulation of transglutaminase 2 by GTP,' Proc Natl Acad Sci U S A, vol. 103, pp. 19683-8, Dec 26 2006. [49] M. D'Eletto, M. G. Farrace, L. Falasca, V. Reali, S. Oliverio, G. Melino, M. Griffin, G. M. Fimia, and M. Piacentini, 'Transglutaminase 2 is involved in autophagosome maturation,' Autophagy, vol. 5, pp. 1145-54, Nov 2009. [50] J. Tucholski, M. Lesort, and G. V. Johnson, 'Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells,' Neuroscience, vol. 102, pp. 481-91, 2001. [51] L. Maiuri, A. Luciani, I. Giardino, V. Raia, V. R. Villella, M. D'Apolito, M. Pettoello-Mantovani, S. Guido, C. Ciacci, M. Cimmino, O. N. Cexus, M. Londei, and S. Quaratino, 'Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation,' J Immunol, vol. 180, pp. 7697-705, Jun 1 2008. [52] M. V. Karpuj, M. W. Becher, J. E. Springer, D. Chabas, S. Youssef, R. Pedotti, D. Mitchell, and L. Steinman, 'Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine,' Nat Med, vol. 8, pp. 143-9, Feb 2002. [53] A. Dedeoglu, J. K. Kubilus, T. M. Jeitner, S. A. Matson, M. Bogdanov, N. W. Kowall, W. R. Matson, A. J. Cooper, R. R. Ratan, M. F. Beal, S. M. Hersch, and R. J. Ferrante, 'Therapeutic effects of cystamine in a murine model of Huntington's disease,' J Neurosci, vol. 22, pp. 8942-50, Oct 15 2002. [54] B. A. Citron, K. S. SantaCruz, P. J. Davies, and B. W. Festoff, 'Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer's disease,' J Biol Chem, vol. 276, pp. 3295-301, Feb 2 2001. [55] L. Min, B. He, and L. Hui, 'Mitogen-activated protein kinases in hepatocellular carcinoma development,' Semin Cancer Biol, vol. 21, pp. 10-20, Feb 2011. [56] M. Karin and E. Gallagher, 'From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance,' IUBMB Life, vol. 57, pp. 283-95, Apr-May 2005. [57] M. Rincon and R. J. Davis, 'Regulation of the immune response by stress-activated protein kinases,' Immunol Rev, vol. 228, pp. 212-24, Mar 2009. [58] E. F. Wagner and A. R. Nebreda, 'Signal integration by JNK and p38 MAPK pathways in cancer development,' Nat Rev Cancer, vol. 9, pp. 537-49, Aug 2009. [59] A. Cuenda and S. Rousseau, 'p38 MAP-kinases pathway regulation, function and role in human diseases,' Biochim Biophys Acta, vol. 1773, pp. 1358-75, Aug 2007. [60] G. Remy, A. M. Risco, F. A. Inesta-Vaquera, B. Gonzalez-Teran, G. Sabio, R. J. Davis, and A. Cuenda, 'Differential activation of p38MAPK isoforms by MKK6 and MKK3,' Cell Signal, vol. 22, pp. 660-7, Apr 2010. [61] S. Kim, H. Y. Kim, S. Lee, S. W. Kim, S. Sohn, K. Kim, and H. Cho, 'Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners,' J Virol, vol. 81, pp. 1714-26, Feb 2007. [62] A. Spaziani, A. Alisi, D. Sanna, and C. Balsano, 'Role of p38 MAPK and RNA-dependent protein kinase (PKR) in hepatitis C virus core-dependent nuclear delocalization of cyclin B1,' J Biol Chem, vol. 281, pp. 10983-9, Apr 21 2006. [63] T. Sakurai, G. He, A. Matsuzawa, G. Y. Yu, S. Maeda, G. Hardiman, and M. Karin, 'Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis,' Cancer Cell, vol. 14, pp. 156-65, Aug 12 2008. [64] L. Hui, L. Bakiri, A. Mairhorfer, N. Schweifer, C. Haslinger, L. Kenner, V. Komnenovic, H. Scheuch, H. Beug, and E. F. Wagner, 'p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway,' Nat Genet, vol. 39, pp. 741-9, Jun 2007. [65] J. Lee, C. Sun, Y. Zhou, D. Gokalp, H. Herrema, S. W. Park, R. J. Davis, and U. Ozcan, 'p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis,' Nat Med, vol. 17, pp. 1251-60, Oct 2011. [66] S. Woll, R. Windoffer, and R. E. Leube, 'p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells,' J Cell Biol, vol. 177, pp. 795-807, Jun 4 2007. [67] L. Nan, J. Dedes, B. A. French, F. Bardag-Gorce, J. Li, Y. Wu, and S. W. French, 'Mallory body (cytokeratin aggresomes) formation is prevented in vitro by p38 inhibitor,' Exp Mol Pathol, vol. 80, pp. 228-40, Jun 2006. [68] S. Hanada, P. Strnad, E. M. Brunt, and M. B. Omary, 'The genetic background modulates susceptibility to mouse liver Mallory-Denk body formation and liver injury,' Hepatology, vol. 48, pp. 943-52, Sep 2008. [69] W. X. Ding and X. M. Yin, 'Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome,' Autophagy, vol. 4, pp. 141-50, Feb 2008. [70] E. Kuusisto, T. Suuronen, and A. Salminen, 'Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells,' Biochem Biophys Res Commun, vol. 280, pp. 223-228, Jan 12 2001. [71] T. Ishii, T. Yanagawa, K. Yuki, T. Kawane, H. Yoshida, and S. Bannai, 'Low micromolar levels of hydrogen peroxide and proteasome inhibitors induce the 60-kDa A170 stress protein in murine peritoneal macrophages,' Biochem Biophys Res Commun, vol. 232, pp. 33-7, Mar 6 1997. [72] H. G. R. Thompson, J. W. Harris, B. J. Wold, F. Lin, and J. P. Brody, 'p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells,' Oncogene, vol. 22, pp. 2322-2333, Apr 17 2003. [73] L. Nan, Y. Wu, F. Bardag-Gorce, J. Li, B. A. French, A. N. Fu, T. Francis, J. Vu, and S. W. French, 'p62 is involved in the mechanism of Mallory body formation,' Experimental and Molecular Pathology, vol. 77, pp. 168-175, Dec 2004. [74] Y. Nagao, Q. X. Yuan, Y.-J. Y. Wan, B. A. French, and S. W. French, 'Pathogenesis of mallory body formation: studies using the drug-primed mouse model,' Hepatology Research, vol. 13, pp. 42-54, 1998. [75] Y. Nagao, Y.-J. Y. Wan, Q.-X. Yuan, K. Kachi, N. Marceau, and S. W. French, 'Mouse model of hepatocellular hyperplastic nodule formation characterization of mRNA expression,' Hepatology Research, vol. 15, pp. 110-123, 1999. [76] L. Nan, F. Bardag-Gorce, Y. Wu, J. Li, B. A. French, and S. W. French, 'Mallory body forming cells express the preneoplastic hepatocyte phenotype,' Experimental and Molecular Pathology, vol. 80, pp. 109-18, Apr 2006. [77] K. Iyoda, Y. Sasaki, M. Horimoto, T. Toyama, T. Yakushijin, M. Sakakibara, T. Takehara, J. Fujimoto, M. Hori, J. R. Wands, and N. Hayashi, 'Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma,' Cancer, vol. 97, pp. 3017-26, Jun 15 2003. [78] M. A. Antonyak, B. Li, A. D. Regan, Q. Feng, S. S. Dusaban, and R. A. Cerione, 'Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion,' J Biol Chem, vol. 284, pp. 17914-25, Jul 3 2009. [79] M. S. Pavlyukov, N. V. Antipova, M. V. Balashova, and M. I. Shakhparonov, 'Detection of Transglutaminase 2 conformational changes in living cell,' Biochem Biophys Res Commun, vol. 421, pp. 773-9, May 18 2012. [80] J. Wu, S. L. Liu, J. L. Zhu, P. A. Norton, S. Nojiri, J. B. Hoek, and M. A. Zern, 'Roles of tissue transglutaminase in ethanol-induced inhibition of hepatocyte proliferation and alpha 1-adrenergic signal transduction,' J Biol Chem, vol. 275, pp. 22213-9, Jul 21 2000. [81] H. Tatsukawa, Y. Fukaya, G. Frampton, A. Martinez-Fuentes, K. Suzuki, T. F. Kuo, K. Nagatsuma, K. Shimokado, M. Okuno, J. Wu, S. Iismaa, T. Matsuura, H. Tsukamoto, M. A. Zern, R. M. Graham, and S. Kojima, 'Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1,' Gastroenterology, vol. 136, pp. 1783-95 e10, May 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64522 | - |
dc.description.abstract | Fas-associated phosphatase-1 (FAP-1) 為一個大型的非穿膜型酪胺酸去磷酸酶。本實驗室先前之研究發現FAP-1位於一段常發生於肝癌中缺失之染色體片段─4q22上。我們並且發現在約50%之肝癌組織中FAP-1 RNA的表現量有明顯下降之趨勢,因此指出FAP-1在肝臟中可能扮演抑癌基因的角色,然而目前仍不清楚FAP-1在肝臟之病理機轉中所扮演的功能為何。為了瞭解其功能,本實驗室先前利用yeast-two hybrid找尋FAP-1在肝細胞中與之有交互作用之蛋白質,並且發現一個與FAP-1有交互作用的新蛋白質-角蛋白18 (keratin 18, K18)。角蛋白18與角蛋白8 (keratin 8, K8)為構成肝細胞內中間絲的組成成分,其對於肝細胞之結構極為重要。K8及K18並且是許多肝炎中會出現的不正常蛋白堆疊物─ Mallory- Denk body (MDB)的主要組成成分。
因此,在本研究中,我們著重於探討FAP-對K8與K18之調控,並且探討FAP-1參與在MDB形成過程之可能性及其分子機轉。我們首先利用loss of function之方式,在一株高度表現FAP-1之肝癌細胞株PLC5中探討FAP-1對於肝細胞中之K8及K18有何影響。我們發現當細胞中的FAP-1表現量降低時,K8的蛋白質穩定度上升並造成K8蛋白質表現量之累積。於此同時,我們並且發現當FAP-1表現量下降時,K8在絲胺酸73 (Ser73)位點上的磷酸化會明顯上升。此外,我們亦發現當FAP-1表現量下降後細胞中之transglutaminase 活性上升。而值得注意的是,K8之蛋白質表現量上升、K8絲胺酸73位點磷酸化上升及transglutaminase 活性上升皆為參與在MDB形成過程之要因。因此我們進一步探討FAP-1參與在MDB形成的可能性,在利用西方點墨法及免疫螢光染色的實驗中,皆指出FAP-1參與在MDB之形成過程。因此本研究提出FAP-1為一個新的MDB形成過程之調控因子。最後,在本研究中,我們並嘗試找出FAP-1調控絲胺酸73磷酸化及transglutaminase活性之訊息傳導路徑來了解FAP-1可能在肝臟中扮演的功能為何,而初步之結果顯示FAP-1可能透過p38之訊息傳導路徑調控K8於絲胺酸73位點之磷酸化。總結上述之結果,本研究提出FAP-1是一個新的MDB之調控因子,其藉由影響 K8 S73 的磷酸化與transglutaminse的活性來調控MDB在肝臟細胞中的形成,未來我們將在臨床檢體中對FAP-1此角色作進一步之確認。 | zh_TW |
dc.description.abstract | Fas-associated phosphatase-1 (FAP-1) is a large non-transmembrane protein tyrosine phosphatase. In our previous study, FAP-1 was identified as a putative tumor suppressor gene at chromosome 4q22, a region with common allelic loss in most HCCs. The RNA expression of FAP-1 is significantly decreased in more than 50% of HCC, but its function in liver pathogenesis is remained unclear. To address this issue, we took the approach by searching for its associated protein(s) with specific functions in hepatocytes. Aided by yeast two- hybrid analysis, we have previously identified keratin 18 (K18) as a novel interacting protein for FAP-1, which together with keratin 8 (K8) constitutes the major components of the intermediate filaments of hepatocytes. The K8/K18 intermediate filaments not only contribute to the mechanical integrity of cells, they are also the major components of Mallory- Denk body (MDB), the abnormal protein aggregates identified in hepatocytes of many liver diseases.
In the current study, we focused to explore the role of FAP-1 in regulating the function of K18 and K8, and for its involvement in MDB formation. We first took the loss of function approach to examine the effect of FAP-1 on K8/K18 in PLC5 hepatoma cell line, which expresses high level of endogenous FAP-1. Knocking down of FAP-1 caused the accumulation of K8 protein through increasing the protein stability; and the phosphorylation of K8 at Ser73 was increased at the same time. Intriguingly, we found that si-FAP-1 can also enhance the transglutaminse activity. It is noteworthy that the upregulation of K8, increase of phosphorylation K8 at Ser73, and also the higher transglutaminse activity, all contribute to the MDB formation. Our results thus raised a possibility for FAP-1 as a novel regulator for MDB in hepatocytes, which has been supported by our results showing that si-FAP-1 can induce the MDB in PLC5 cells. Finally, we have tried to identify the signaling pathway(s) involved in regulating the function of FAP-1, for the phosphorylation of K8 at Ser73 and the transglutaminse activity. The preliminary results suggested p38 as one candidate kinase involved in regulating FAP-1 for the phosphorylation of K8 at Ser73. In conclusion, the current study has identified FAP-1 as a novel regulator in regulating MDB formation, through its influence on the phosphorylation of K8 at Ser73 and transglutaminse activity in hepatocytes, and the implication in clinical specimens warrants further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:52:15Z (GMT). No. of bitstreams: 1 ntu-101-R99445111-1.pdf: 4689757 bytes, checksum: 456c46a0ff9173e5c9e0dddd5e008067 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract IV 序論 1 Fas-associated phosphatase-1 蛋白質之分子結構與功能 1 角蛋白(keratin)之蛋白質結構及特性 2 角蛋白8/ 18 (Keratin 8/ 18)在肝臟中的重要性及其磷酸化修飾 3 Mallory- Denk body (MDB)的組成與形成機制 4 Transglutaminase 2 (TG2) 之結構及活化機制 6 P38之訊息傳導路徑及其在肝臟中對K8/K18之調控角色 7 研究目的 10 材料與方法 11 研究結果 19 I. FAP-1影響K8之蛋白質表現量及Ser73之磷酸化 19 II. FAP-1表現量下降會增加游離態 (free form)的K8 20 III. FAP-1表現量下降會促進K8 cross- linking的產生 21 IV. 在PLC5細胞中建立MDB之系統 21 V. FAP-1表現量下降會促進MDB之形成 22 VI. FAP-1下降會使PLC5中Transglutaminase之活性上升 23 VII. FAP-1透過降低K8之蛋白質穩定度而影響其表現量 24 VIII. 探討FAP-1是否透過p38之訊息傳遞路徑影響K8上S73之磷酸化 24 結果討論 26 I. FAP-1參與MDB形成初期之調控 26 II. FAP-1參與在MDB形成的可能機制 27 III. FAP-1在肝臟中抑癌角色之探討 28 IV. FAP-1提供了研究MDB初期調控過程之Model 29 V. FAP-1對TG2之可能調控機制及其重要性 30 參考文獻 32 圖附錄 40 | |
dc.language.iso | zh-TW | |
dc.title | FAP-1去磷酸酶為Mallory- Denk Body形成過程之ㄧ新穎調控因子 | zh_TW |
dc.title | Fas-Associated Phosphatase-1 as a Novel Regulator for Mallory-Denk Body Formation | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),鄧述諄(Shu-Chun Teng),施修明(Hsiu-Ming Shih) | |
dc.subject.keyword | FAP-1,MDB,角蛋白8/18,transglutaminse,p38, | zh_TW |
dc.subject.keyword | FAP-1,MDB,keratin 8/18,transglutaminse,p38, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。