請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64507完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方(Wen-Fang Wu) | |
| dc.contributor.author | Po-Lun Chou | en |
| dc.contributor.author | 邱柏倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:51:21Z | - |
| dc.date.available | 2017-08-15 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | 1. 陳信文、陳立軒、林永森與陳志銘,微系統構裝基礎原理,高立圖書有限公司,民國91年。
2. R. Darveaux, I. Turlik, L. T. Hwang and A. Reisman, “Thermal stress analysis of a multichip package design,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 663-672, 1989. 3. J. H. Lau and S. W. R. Lee, “Effects of microvia build-up layers on the solder joint reliability of a wafer level chip scale package (WLCSP),” Proceedings of the 51st Electronic Components and Technology Conference, pp. 1207-1215, 2001. 4. D. H. Kim, P. Elenius and S. Barrett, “Solder joint reliability and characteristics of deformation and crack growth of Sn-Ag-Cu versus eutectic Sn-Pb on a WLP in a thermal cycling test,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, pp. 84-90, 2002. 5. G. Gustafsson, I. Guven, V. Kradinov and E. Madenci, “Finite element modeling of BGA packages for life prediction,” Proceedings of the 50th Electronic Components and Technology Conference, pp. 1059-1063, 2000. 6. H. C. Cheng, C. Y. Yu and W. H. Chen, “An effective thermal-mechanical modeling methodology for large-scale area array typed packages,” Computer Modeling in Engineering and Sciences, Vol. 7, pp. 1-17, 2005. 7. Y. S. Lai and T. H. Wang, “Verification of submodeling technique in thermomechanical reliability assessment of flip-chip package assembly,” Microelectronics Reliability, Vol. 45, No. 3-4, pp. 575-582, 2005. 8. L. F. Coffin, “A study of the effects of cyclic thermal stresses on a ductile metal,”Transaction of ASME, Vol. 76, pp. 931-950, 1954. 9. S. S. Manson, Thermal Stress and Low-Cycle Fatigue, McGraw-Hill, NY, USA, 1966. 10. J. Morrow, “Cyclic plastic strain energy and fatigue of metals,” Internal Friction Damping and Cyclic Plasticity, ASTM S TP378, Philadelphia, pp. 45-48, 1965. 11. R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation,” Proceedings of the 50th Electronic Components and Technology Conference, pp. 1048-1058, 2000. 12. M. L. Wu and D. Barker, “Rapid assessment of BGA life under vibration and bending, and influence of input parameter uncertainties,” Microelectronics Reliability, Vol. 50, No. 1, pp. 140-148, 2010. 13. L. L. Mercado and V. Sarihan, “Predictive design of flip-chip PBGA for high reliability and low cost,” Electronic Components and Technology Conference, pp. 1111-1115, 1999. 14. C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill, NY, USA, 1997. 15. K. C. Norris and A. H. Landzberg, “Reliability of controlled collapse interconnections,” IBM Journal of Research and Development, Vol. 13, No. 3, pp. 266-271, 1969. 16. The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment, European Union, 2002. 17. European Commission Frequently Asked Questions on RoHS and WEEE, 2005. 18. N. Pan, G. Henshall, F. Billaut, S. Dai, M. Strum, et al., “An acceleration model for Sn-Ag-Cu solder joint reliability under various thermal cycle conditions,” Proceedings of the SMTA International Conference, Vol. 876-883, 2005. 19. O. Salmela, “Acceleration factors for lead-free solder materials,” IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 4, pp. 700-707, 2007. 20. V. Vasudevan and Fan Xuejun, “An acceleration model for lead-free (SAC) solder joint reliability under thermal cycling,” Proceedings of the 58th Electronic Components and Technology Conference, pp. 139-145, 2008. 21. W. Engelmaier, “The use environments of electronic assemblies and their impact on surface mount solder attachment reliability,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, pp. 903-908, 1990. 22. W. Dauksher, “A second-level SAC solder-joint fatigue-life prediction methodology,” IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 1, pp. 168-173, 2008. 23. S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel, “Understanding the effect of dwell time on fatigue life of packages using thermal shock and intrinsic material behavior,” Proceedings of the 53rd Electronic Components and Technology Conference, pp. 898-904, 2003. 24. L. Yang, Bernstein, B. Joseph and T. Koschmieder, “Assessment of acceleration models used for BGA solder joint reliability studies,” Vol. 49, No. 12, pp. 9, 2009. 25. R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, NY, USA, 2001. 26. C. Basaran, H. Tang and S. Nie, “Experimental damage mechanics of microelectronic solder joints under fatigue loading,” Electronic Components and Technology Conference, pp. 874-881 Vol. 1, 2005. 27. L. Jue, J. Karppinen, T. Laurila and J. K. Kivilahti, “Reliability of lead-free solder interconnections in thermal and power cycling tests,” IEEE Transactions on Components and Packaging Technologies, Vol. 32, No. 2, pp. 302-308, 2009. 28. G. E. Dieter, Mechanical metallurgy, McGraw-Hill, NY, USA, 1976. 29. R. von Mises, “Mechanik der festen Körper im plastisch deformablen Zustand,” Göttin. Nachr. Math. Phys., Vol. 1, pp. 582-592, 1913. 30. M. Amagai, “Characterization of chip scale packaging materials,” Microelectronics Reliability, Vol. 39 , No. 9, pp. 1365-1377, 1999. 31. F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals, MacMillian, New York, 1965. 32. 石逸群,累積失效與可靠度關係之探討,國立中央大學機械工程研究所碩士論文,民國89年。 33. 林惠玲與陳正倉,應用統計學,雙葉書廊,民國95年。 34. JEDEC Solid State Technology Association, Temperature Cycling, JESD22-A104D, 2009. 35. N. E. Dowing, Mechanical Behavior of Materials, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1992. 36. C. P. Yeh, W. X. Zhou and K. Wyatt, “Parametric finite element analysis of flip chip reliability,” International Journal of Microcircuits and Electronic Packaging, Vol. 19, No. 2, pp. 120-127, 1996. 37. J. Lau and W. Dauksher, “Effects of ramp-time on the thermal-fatigue life of SnAgCu lead-free solder joints,” Proceedings of the 55th IEEE Electronic Components and Technology Conference, pp. 1292-1298, 2005. 38. W. R. Jong, S.C. Chen, C. Tsai, C.C. Chiu and H. T. Chang, “The geometrical effects of bumps on the fatigue life of flip-chip packages by taguchi method,” Journal of Reinforced Plastics and Composites, Vol. 25, pp. 99-114, 2006. 39. S. Ahmer, “Accumulated creep strain and energy density based accumulated creep strain and energy density based,” Electronic Components and Technology Conference, pp. 737-746, 2004. 40. J. H. Lau, S. W. R. Lee, C. Chang and C. Ouyang, “Effects of underfill material properties on the reliability of solder bumped flip chip on board with imperfect underfill encapsulants,” Proceedings of the 49th Electronic Components and Technology Conference, pp. 571-582, 1999. 41. D. K. Shangguan, Lead-free Solder Interconnect Reliability, ASM International, Materials Park, Ohio, 2005. 42. 陳宏岳,參數變異對於覆晶構裝熱應力與疲勞壽命之影響,國立台灣大學機械工程研究所碩士論文,民國92年。 43. 蔡坤儒,覆晶構裝受熱循環應力疲勞壽命之可靠度,國立台灣大學機械工程研究所碩士論文,民國95年。 44. 許登凱,電子封裝體受熱循環應力之疲勞壽命分析與可靠度研究,國立台灣大學機械工程研究所碩士論文,民國97年。 45. 呂俊麟、蘇彥輔、陳永樹與范振澤,錫球接腳於彎曲及剪力測試下之力學特性研究,中國機械工程學會第二十四屆全國學術研討會論文集,民國96年。 46. ANSYS Release 12.0 Documentation 47. 柯煇耀,壽命驗証與評估—加速試驗技術之應用,科技圖書股份有限公司,民國101年。 48. J. Bressers, Creep and Fatigue in High Temperature Alloys, Applied Science Publishers Ltd., England, 1981. 49. O. Salmela, “Reliability analysis of some ceramic lead-free solder attachments,” SMTA PanPac in Proc., pp. 161-169, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64507 | - |
| dc.description.abstract | 現今輕薄型電子產品當道,晶圓級封裝(Wafer-Level Chip-Scale Packages, WLCSP)的產品需求益趨增加,而業界為快速回應市場需求,常壓縮電子產品開發時程,藉由加速壽命試驗,快速取得產品壽命資訊。觀察此些試驗結果,即便在同一測試環境下,封裝體壽命往往具有相當的離散性,並非如多數研究所得結果為一定値。為使模擬分析反應並呈現試驗或實測結果,本研究以有限元素法為分析工具,探討一晶圓級封裝體在業界常用熱循環試驗規範下,因參數變異對其壽命分佈的影響,並藉分析所得之壽命,建構晶圓級封裝體之壽命預估模型。本研究分為三部份,在第一部份方面,本研究選擇一特定晶圓級封裝體,針對其材料與尺寸參數,設定合理的變異,進行力學分析與熱疲勞壽命計算,以探討參數變異對封裝體壽命之影響;在第二部份方面,本研究選擇數個加速壽命模型,針對封裝體在不同測試環境下壽命分佈的模擬結果,以迴歸分析求取模型參數,並探討各模型之優劣,最後選擇較適當的Norris–Landzberg模型來描述加速壽命試驗結果,並分析預估誤差,制定進一步的分析策略;在最後一部份,本研究除增加壽命預估模型參數,以增進預估準確度外,也進行熱循環參數對封裝體壽命的敏感度分析,並配合熱機械疲勞特性,提出壽命預估模型的改善方案。本研究分析結果顯示,熱循環參數中的最高溫度對晶圓級封裝體壽命影響最劇,在JEDEC所述各熱循環試驗條件下,如果選擇最高溫度110℃者為區分試驗條件並搭配Norris-Landzberg加速壽命模型預估封裝體壽命,其平均預估誤僅在1.59%之內。 | zh_TW |
| dc.description.abstract | Wafer-Level Chip-Scale Packages (WLCSP) have become more and more popular due to their light-weights and small sizes. To reduce time-to-market of a product as well as its development cost, the electronics industry often employs accelerated tests to find the life of the product. It appears that test outcome of the product’s life is not determin-istic but a random variable following a certain probability distribution. Therefore, in the present study, a finite element analysis taking uncertainty into consideration of a WLCSP subjected to various JEDEC prescribed thermal cyclic loading conditions is performed. A life prediction model of the WLCSP is constructed based on the analytical result. The study is divided into three parts. In the first part, a few parameters involved in the package size, material property are assumed random to account for their uncer-tainties. In particular, the influence of these uncertainties on fatigue life of the package is investigated. In the second part of the study, nonlinear regression analyses are carried out to find parametric values of several acceleration models. The Norris-Landzberg model is selected after comparing its performance with those of others. In the last part, in addition to parameters of the prediction model, thermal mechanical fatigue properties are taken into account and sensitivity analysis is performed for improvement of the pre-diction accuracy. The final result of the present study indicates the maximum value of the cycling temperature has great impact on life prediction of the WLCSP. In particular, for the studied WLCSP, the maximum temperature of 110℃ is suggested to be selected for dividing all JEDEC prescribed thermal cycling conditions into two groups when predicting lives of the package subjected to different conditions. The prediction errors are found to be within 1.59% by doing so. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:51:21Z (GMT). No. of bitstreams: 1 ntu-101-R99522534-1.pdf: 5341441 bytes, checksum: 1ec8e3bc37e39f1e45726cbeea127868 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 表目錄 VIII 圖目錄 X 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 晶圓級封裝體簡介 2 1-2-1 尺寸優勢 2 1-2-2 成本優勢 3 1-2-3 晶圓級封裝技術 3 1-3 文獻回顧 3 1-4 研究動機與目的 6 1-5 研究流程 7 1-6 論文架構 8 第二章 應用理論與規範概述 14 2-1 熱機械疲勞 14 2-1-1 疲勞變形 14 2-1-2 潛變變形 16 2-2 可靠度基本理論 18 2-2-1 可靠度與機率函數 18 2-2-2 連續機率分佈 19 2-2-3 機率圖法 23 2-2-4 卡方適配度檢定 25 2-3 迴歸分析 26 2-3-1 簡單迴歸分析 26 2-3-2 複迴歸分析 28 2-3-3 簡單非線性迴歸 29 2-4 六標準差 31 2-5 熱循環標準規範 31 第三章 有限元素數值分析 36 3-1 參數化設計語言 36 3-2 有限元素模擬程序 37 3-3 有限元素建模方式 37 3-3-1 二維平面模型 37 3-3-2 三維切片模型 38 3-3-3 三維對稱模型 38 3-3-4 三維對稱模型包含子模型 39 3-4 有限元素模擬 39 3-4-1 基本假設 39 3-4-2 結構尺寸與材料性質 40 3-4-3 邊界條件 41 3-4-4 負載條件 41 3-5 有限元素模型建構 42 3-6 晶圓級封裝體壽命分析 43 3-7 參數變異之影響 43 第四章 加速壽命模型評估與改善分析 59 4-1 定性加速試驗 59 4-2 定量加速試驗 60 4-3 加速壽命試驗簡介 60 4-4 加速壽命模型 61 4-4-1 Norris–Landzberg模型 61 4-4-2 Salmela模型 62 4-4-3 Dauksher模型 63 4-5 壽命預估模型分析 63 4-5-1 模型參數值 64 4-5-2 模型預估誤差 64 4-6 改善分析之方法 64 4-6-1 參數組合分析 64 4-6-2 參數敏感度分析 66 4-7 應用改善方式之分析 67 4-8 加速因子模型 68 第五章 結論與未來展望 82 5-1 結論 82 5-2 未來展望 82 參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 晶圓級封裝 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 參數變異性 | zh_TW |
| dc.subject | 熱疲勞壽命 | zh_TW |
| dc.subject | 加速壽命模型 | zh_TW |
| dc.subject | Wafer-Level Chip-Scale Package (WLCSP) | en |
| dc.subject | Finite Element Analysis | en |
| dc.subject | Uncertainty | en |
| dc.subject | Acceleration Model | en |
| dc.subject | Thermal Fatigue Life | en |
| dc.title | 以加速壽命模型評估晶圓級晶片尺寸封裝體在熱循環下之疲勞壽命 | zh_TW |
| dc.title | Investigation of Fatigue Life of Wafer-Level Chip-Scale Packages under Thermal Cycling Conditions by Acceleration Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡明義,陳永樹,徐堯 | |
| dc.subject.keyword | 晶圓級封裝,有限元素法,參數變異性,加速壽命模型,熱疲勞壽命, | zh_TW |
| dc.subject.keyword | Wafer-Level Chip-Scale Package (WLCSP),Finite Element Analysis,Uncertainty,Acceleration Model,Thermal Fatigue Life, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
