Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64504
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉(Ching-Yu Lin)
dc.contributor.authorShu-Wei Changen
dc.contributor.author張書維zh_TW
dc.date.accessioned2021-06-16T17:51:10Z-
dc.date.available2020-03-12
dc.date.copyright2020-03-12
dc.date.issued2020
dc.date.submitted2020-02-27
dc.identifier.citationAbdo, K. M., S. L. Eustis, M. McDonald, M. P. Jokinen, B. Adkins, and J. K. Haseman. 1992. 'Naphthalene: a respiratory tract toxicant and carcinogen for mice', Inhalation Toxicology, 4: 393-409.
Agassandian, M., and R. K. Mallampalli. 2013. 'Surfactant phospholipid metabolism', Biochimica et biophysica acta, 1831: 612-25.
Ahmadian, M., R. E. Duncan, K. Jaworski, E. Sarkadi-Nagy, and H. S. Sul. 2007. 'Triacylglycerol metabolism in adipose tissue', Future lipidology, 2: 229-37.
Arana, L., P. Gangoiti, A. Ouro, M. Trueba, and A. Gómez-Muñoz. 2010. 'Ceramide and ceramide 1-phosphate in health and disease', Lipids in health and disease, 9.
ATSDR. 2005. 'Toxicological Profile for Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene.' In.: US Department of Health and Human Services: Washington, DC: Agency for Toxic Substance and Disease Registry (ATSDR), Sciences International Inc.
Avcioglu, G., B. Özbek Ipteç, G. Akcan, B. Görgün, K. Fidan, A. Carhan, G. Yilmaz, and L. D. Kozaci. 2019. 'Effects of 1,25-Dihydroxy vitamin D3 on TNF-α induced inflammation in human chondrocytes and SW1353 cells: a possible role for toll-like receptors', Molecular and Cellular Biochemistry.
Ayala, A., M. F. Muñoz, and S. Argüelles. 2014. 'Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal', Oxidative medicine and cellular longevity, 2014: 360438-38.
Balla, T. 2013. 'Phosphoinositides: tiny lipids with giant impact on cell Regulation', Physiological Reviews, 93: 1019-137.
Baudiß, K., C. K. Ayata, Z. Lazar, S. Cicko, J. Beckert, A. Meyer, A. Zech, R. P. Vieira, R. Bittman, A. Gómez-Muñoz, I. Merfort, and M. Idzko. 2015. 'Ceramide-1-phosphate inhibits cigarette smoke-induced airway inflammation', European Respiratory Journal, 45: 1669-80.
Baudiß, K., R. de Paula Vieira, S. Cicko, K. Ayata, M. Hossfeld, N. Ehrat, A. Gómez-Muñoz, H. K. Eltzschig, and M. Idzko. 2016. 'C1P attenuates lipopolysaccharide-induced acute lung injury by preventing NF-κB activation in neutrophils', Journal of immunology (Baltimore, Md. : 1950), 196: 2319-26.
Benito-Vicente, A., K. B. Uribe, S. Jebari, U. Galicia-Garcia, H. Ostolaza, and C. Martin. 2018. 'Familial hypercholesterolemia: the most frequent cholesterol metabolism disorder caused disease', International journal of molecular sciences, 19: 3426-47.
Benjamini, Y., and Y. Hochberg. 1995. 'Controlling the false discovery rate: a practical and powerful approach to multiple testing', Journal of the Royal Statistical Society. Series B (Methodological), 57: 289-300.
Burke, J. E. 2018. 'Structural basis for regulation of phosphoinositide kinases and their involvement in human disease', Molecular Cell, 71: 653-73.
Calder, P. C. 2005. 'Polyunsaturated fatty acids and inflammation', Biochemical Society Transactions, 33: 423-27.
Cao, Z., M. M. Mulvihill, P. Mukhopadhyay, H. Xu, K. Erdélyi, E. Hao, E. Holovac, G. Haskó, B. F. Cravatt, D. K. Nomura, and P. Pacher. 2013. 'Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice', Gastroenterology, 144: 808-17.e15.
Chalfant, C. E., and S. Spiegel. 2005. 'Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling', Journal of Cell Science, 118: 4605-12.
Chen, W-L, C-Y Lin, Y-H Yan, K. T. Cheng, and T-J Cheng. 2014. 'Alterations in rat pulmonary phosphatidylcholines after chronic exposure to ambient fine particulate matter', Molecular BioSystems, 10: 3163-69.
Chen, Y-R. 2018. 'Using UHPLC-QTOF/MS based lipidomics to study lipid effects of ZnO particle exposure on the rat plasma', National Taiwan University.
Dean, J. M., and I. J. Lodhi. 2018. 'Structural and functional roles of ether lipids', Protein & cell, 9: 196-206.
Della Corte, A., G. Chitarrini, I. M. Di Gangi, D. Masuero, E. Soini, F. Mattivi, and U. Vrhovsek. 2015. 'A rapid LC–MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes', Talanta, 140: 52-61.
DeLong, C. J., Y-J Shen, M. J. Thomas, and Z. Cui. 1999. 'Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway', Journal of Biological Chemistry, 274: 29683-88.
Dennis, E. A., J. Cao, Y-H Hsu, V. Magrioti, and G. Kokotos. 2011. 'Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention', Chemical Reviews, 111: 6130-85.
Dettmer, K., P. A. Aronov, and B. D. Hammock. 2007. 'Mass spectrometry-based metabolomics', Mass spectrometry reviews, 26: 51-78.
Dushianthan, A., R. Cusack, M. P. W. Grocott, and A. D. Postle. 2018. 'Abnormal liver phosphatidylcholine synthesis revealed in patients with acute respiratory distress syndrome', Journal of lipid research, 59: 1034-45.
Elvas, F., S. Stroobants, and L. Wyffels. 2017. 'Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis', Apoptosis, 22: 971-87.
Emoto, K., N. Toyama-Sorimachi, H. Karasuyama, K. Inoue, and M. Umeda. 1997. 'Exposure of phosphatidylethanolamine on the surface of apoptotic cells', Experimental Cell Research, 232: 430-34.
EPA, U.S. 1986. 'Health and environmental effects profile for naphthalene.' In.: U.S. Environmental Protection Agency, Washington, D.C., EPA.
Fadeel, B., B. Gleiss, K. Högstrand, J. Chandra, T. Wiedmer, P. J. Sims, J-I Henter, S. Orrenius, and A. Samali. 1999. 'Phosphatidylserine exposure during apoptosis Is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression', Biochemical and Biophysical Research Communications, 266: 504-11.
Fahy, E., S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. H. Raetz, T. Shimizu, F. Spener, G. van Meer, M. J. O. Wakelam, and E. A. Dennis. 2009. 'Update of the LIPID MAPS comprehensive classification system for lipids', Journal of lipid research, 50 Suppl: S9-S14.
Folch, J., M. Lees, and G. H. S. Stanley. 1957. 'A simple method for the isolation and purification of total lipides from animal tissues', Journal of Biological Chemistry, 226: 497-509.
Fuller, N., and R. P. Rand. 2001. 'The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes', Biophysical journal, 81: 243-54.
Garbossa, S. G., and F. Folli. 2017. 'Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism', Reviews in Endocrine and Metabolic Disorders, 18: 243-58.
Gika, H. G., E. Macpherson, G. A. Theodoridis, and I. D. Wilson. 2008. 'Evaluation of the repeatability of ultra-performance liquid chromatography–TOF-MS for global metabolic profiling of human urine samples', Journal of Chromatography B, 871: 299-305.
Godzien, J., M. Ciborowski, M. P. Martínez-Alcázar, P. Samczuk, A. Kretowski, and C. Barbas. 2015. 'Rapid and reliable identification of phospholipids for untargeted metabolomics with LC–ESI–QTOF–MS/MS', Journal of Proteome Research, 14: 3204-16.
Gross, R. W., C. M. Jenkins, J. Yang, D. J. Mancuso, and X. Han. 2005. 'Functional lipidomics: the roles of specialized lipids and lipid–protein interactions in modulating neuronal function', Prostaglandins & Other Lipid Mediators, 77: 52-64.
Gubern, A., M. Barceló-Torns, J. Casas, D. Barneda, R. Masgrau, F. Picatoste, J. Balsinde, M. A. Balboa, and E. Claro. 2009. 'Lipid droplet biogenesis induced by stress involves triacylglycerol synthesis that depends on group VIA phospholipase A2', Journal of Biological Chemistry, 284: 5697-708.
Guillot, X., L. Semerano, N. Saidenberg-Kermanac'h, G. Falgarone, and m-c. Boissier. 2010. 'Vitamin D and inflammation', Joint, bone, spine : revue du rhumatisme, 77: 552-57.
Hamon, Y., C. Broccardo, O. Chambenoit, M-F. Luciani, F. Toti, S. Chaslin, J. M. Freyssinet, P. F. Devaux, J. McNeish, D. Marguet, and G. Chimini. 2000. 'ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine', Nature Cell Biology, 2: 399-406.
Hannun, Y. A., and L. M. Obeid. 2018. 'Sphingolipids and their metabolism in physiology and disease', Nature reviews Molecular cell biology, 19: 175-91.
Hermansson, M., K. Hokynar, and P. Somerharju. 2011. 'Mechanisms of glycerophospholipid homeostasis in mammalian cells', Progress in Lipid Research, 50: 240-57.
Hsieh, P-C. 2016. 'Mass spectrometry-based lipidomics to study dose-response relationship of naphthalene on various organs of mice', National Taiwan University.
Hu, C., R. Heijden, M. Wang, J. van der Greef, T. Hankemeier, and G. Xu. 2009. 'Analytical strategies in lipidomics and applications in disease biomarker discovery', Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 877: 2836-46.
Hu, C., R. van der Heijden, M. Wang, J. van der Greef, T. Hankemeier, and G. Xu. 2009. 'Analytical strategies in lipidomics and applications in disease biomarker discovery', Journal of Chromatography B, 877: 2836-46.
Hull, M. C., D. B. Sauer, and J. S. Hovis. 2004. 'Influence of lipid chemistry on the osmotic response of cell membranes:  effect of non-bilayer forming lipids', The Journal of Physical Chemistry B, 108: 15890-95.
Kerwin, J. L., A. R. Tuininga, and L. H. Ericsson. 1994. 'Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry', Journal of lipid research, 35: 1102-14.
Kinnunen, P. K. J., K. Kaarniranta, and A. K. Mahalka. 2012. 'Protein-oxidized phospholipid interactions in cellular signaling for cell death: From biophysics to clinical correlations', Biochimica et Biophysica Acta (BBA) - Biomembranes, 1818: 2446-55.
Law, S-H, M-L Chan, G. K Marathe, F. Parveen, C-H Chen, and L-Y Ke. 2019. 'An updated review of lysophosphatidylcholine metabolism in human diseases', International journal of molecular sciences, 20: 1149-73.
Lee, S-H, S-H Hong, C-H Tang, Y- S Ling, K-H Chen, H-J Liang, and C-Y Lin. 2018. 'Mass spectrometry-based lipidomics to explore the biochemical effects of naphthalene toxicity or tolerance in a mouse model', PloS one, 13: e0204829-e29.
Leuthold, P., E. Schaeffeler, S. Winter, F. Büttner, U. Hofmann, T. E. Mürdter, S. Rausch, D. Sonntag, J. Wahrheit, F. Fend, J. Hennenlotter, J. Bedke, M. Schwab, and M. Haag. 2017. 'Comprehensive metabolomic and lipidomic profiling of human kidney tissue: a platform comparison', Journal of Proteome Research, 16: 933-44.
Levi, M., M. M. Meijler, A. Gómez-Muñoz, and T. Zor. 2010. 'Distinct receptor-mediated activities in macrophages for natural ceramide-1-phosphate (C1P) and for phospho-ceramide analogue-1 (PCERA-1)', Molecular and Cellular Endocrinology, 314: 248-55.
Li, N., Y. Sancak, J. Frasor, and G. E. Atilla-Gokcumen. 2018. 'A protective role for triacylglycerols during apoptosis', Biochemistry, 57: 72-80.
Liebisch, G., J. A. Vizcaíno, H. Köfeler, M. Trötzmüller, W. J. Griffiths, G. Schmitz, F. Spener, and M. J. O. Wakelam. 2013. 'Shorthand notation for lipid structures derived from mass spectrometry', Journal of lipid research, 54: 1523-30.
Lin, S-T. 2018. 'Mass spectrometry-based lipidomics to characterize naphthalene-induced respiratory toxicity on bronchoalveolar lavage fluid of mice', National Taiwan University.
Ling, Y-S, H-J Liang, M-H Chung, M-H Lin, and C-Y Lin. 2014. 'NMR- and MS-based metabolomics: various organ responses following naphthalene intervention', Molecular BioSystems, 10: 1918-31.
Ma, D. W. L., J. Seo, K. C. Switzer, Y. Y. Fan, D. N. McMurray, J. R. Lupton, and R. S. Chapkin. 2004. 'n−3 PUFA and membrane microdomains: a new frontier in bioactive lipid research', The Journal of Nutritional Biochemistry, 15: 700-06.
Mahvi, D., H. Bank, and R. Harley. 1977. 'Morphology of a naphthalene-induced bronchiolar lesion', The American journal of pathology, 86: 558-72.
Manni, M. M., J. Sot, E. Arretxe, R. Gil-Redondo, J. M. Falcón-Pérez, D. Balgoma, C. Alonso, F.M. Goñi, and A. Alonso. 2018. 'The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: biophysical and physiological implications', Chemistry and Physics of Lipids, 217: 29-34.
Marion-Letellier, R., G. Savoye, and S. Ghosh. 2015. 'Polyunsaturated fatty acids and inflammation', IUBMB Life, 67: 659-67.
Martinez-Seara, H., T. Róg, M. Karttunen, R. Reigada, and I. Vattulainen. 2008. 'Influence of cis double-bond parametrization on lipid membrane properties: How seemingly insignificant details in force-field change even qualitative trends', The Journal of Chemical Physics, 129: 510-19.
Mir, S. A., P. Rajagopalan, A. P. Jain, A. A. Khan, K. K. Datta, S. V. Mohan, S. S. Lateef, N. Sahasrabuddhe, B. L. Somani, T. S. Keshava Prasad, A. Chatterjee, K. V. Veerendra Kumar, M. VijayaKumar, Rekha V. Kumar, S. Gundimeda, A. Pandey, and H. Gowda. 2015. 'LC–MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma', Journal of Proteomics, 127: 96-102.
Morand, O. H., R. A. Zoeller, and C. R. Raetz. 1988. 'Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation', Journal of Biological Chemistry, 263: 11597-606.
Napolitano, A., A. Benavides, C. Pizza, and S. Piacente. 2011. 'Qualitative on-line profiling of ceramides and cerebrosides by high performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry: the case of Dracontium loretense', Journal of Pharmaceutical and Biomedical Analysis, 55: 23-30.
O'Brien, K. A. F., L. L. Smith, and G. M. Cohen. 1985. 'Differences in naphthalene-induced toxicity in the mouse and rat', Chemico-Biological Interactions, 55: 109-22.
Ordoñez, M., I. G. Rivera, N. Presa, and A. Gomez-Muñoz. 2016. 'Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration', Cellular Signalling, 28: 1066-74.
Pakenham, G., J. Lango, M. Buonarati, D. Morin, and A. Buckpitt. 2002. 'Urinary naphthalene mercapturates as biomarkers of exposure and stereoselectivity of naphthalene epoxidation', Drug Metabolism and Disposition, 30: 247-53.
Phimister, A. J., H. T. Nagasawa, A. R. Buckpitt, and C. G. Plopper. 2005. 'Prevention of naphthalene-induced pulmonary toxicity by glutathione prodrugs: Roles for glutathione depletion in adduct formation and cell injury', Journal of Biochemical and Molecular Toxicology, 19: 42-51.
Piccirillo, V. J., M. G. Bird, R. J. Lewis, and W. J. Bover. 2012. 'Preliminary evaluation of the human relevance of respiratory tumors observed in rodents exposed to naphthalene', Regulatory Toxicology and Pharmacology, 62: 433-40.
Plopper, C. G., C. Suverkropp, D. Morin, S. Nishio, and A. Buckpitt. 1992. 'Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene', Journal of Pharmacology and Experimental Therapeutics, 261: 353-63.
Preuss, R., J. Angerer, and H. Drexler. 2003. 'Naphthalene—an environmental and occupational toxicant', International Archives of Occupational and Environmental Health, 76: 556-76.
Sandra, K., A. d. S. Pereira, G. Vanhoenacker, F. David, and P. Sandra. 2010. 'Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry', Journal of Chromatography A, 1217: 4087-99.
Schoeman, J. C., A. C. Harms, M. van Weeghel, R. Berger, R. J. Vreeken, and T. Hankemeier. 2018. 'Development and application of a UHPLC-MS/MS metabolomics based comprehensive systemic and tissue-specific screening method for inflammatory, oxidative and nitrosative stress', Analytical and bioanalytical chemistry, 410: 2551-68.
Shoemaker, S. D., and T. K. Vanderlick. 2002. 'Stress-induced leakage from phospholipid vesicles:  effect of membrane composition', Industrial & Engineering Chemistry Research, 41: 324-29.
Smith, H. L., M. C. Howland, A. W. Szmodis, Q. Li, L. L. Daemen, A. N. Parikh, and J. Majewski. 2009. 'Early stages of oxidative stress-induced membrane permeabilization: a neutron reflectometry study', Journal of the American Chemical Society, 131: 3631-38.
Stubbs, C. D., and A. D. Smith. 1984. 'The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function', Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 779: 89-137.
t’Kindt, R., E. D. Telenga, L. Jorge, A. J. M. Van Oosterhout, P. Sandra, N. H. T. Ten Hacken, and K. Sandra. 2015. 'Profiling over 1500 lipids in induced lung sputum and the implications in studying lung diseases', Analytical Chemistry, 87: 4957-64.
Tang, C-H, P-N Tsao, C-Y Chen, M-S Shiao, W-H Wang, and C-Y Lin. 2011. 'Glycerophosphocholine molecular species profiling in the biological tissue using UPLC/MS/MS', Journal of Chromatography B, 879: 2095-106.
Tilvi, S., M. Majik, and C. G. Naik. 2005. 'A tandem mass spectrometric approach for determining the structure of molecular species of ceramide in the marine sponge, Haliclona cribricutis', European Journal of Mass Spectrometry, 11: 345-51.
Triggiani, M., A. Oriente, M. C. Seeds, D. A. Bass, G. Marone, and F. H. Chilton. 1995. 'Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool', The Journal of experimental medicine, 182: 1181-90.
Vallabhapurapu, S. D., V. M. Blanco, M. K. Sulaiman, S. L. Vallabhapurapu, Z. Chu, R. S. Franco, and X. Qi. 2015. 'Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium', Oncotarget, 6: 34375-88.
van Meer, G., D. R. Voelker, and G. W. Feigenson. 2008. 'Membrane lipids: where they are and how they behave', Nature reviews. Molecular cell biology, 9: 112-24.
Van Winkle, L. S., Z. A. Johnson, S. J. Nishio, C. D. Brown, and C. G. Plopper. 1999. 'Early events in naphthalene-induced acute Clara cell toxicity', American Journal of Respiratory Cell and Molecular Biology, 21: 44-53.
Vance, Jean E., and G. Tasseva. 2013. 'Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells', Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831: 543-54.
Vessichelli, M., S. Mariggiò, A. Varone, P. Zizza, A. Di Santo, C. Amore, G. Dell'Elba, A. Cutignano, A. Fontana, C. Cacciapuoti, G. Di Costanzo, M. Zannini, T. de Cristofaro, V. Evangelista, and D. Corda. 2017. 'The natural phosphoinositide derivative glycerophosphoinositol inhibits the lipopolysaccharide-induced inflammatory and thrombotic responses', The Journal of biological chemistry, 292: 12828-41.
Vuchetich, P. J., D. Bagchi, M. Bagchi, E. A. Hassoun, L. Tang, and S. J. Stohs. 1996. 'Naphthalene-induced oxidative stress in rats and the protective effects of vitamin E succinate', Free Radical Biology and Medicine, 21: 577-90.
Walkey, C. J., L. R. Donohue, R. Bronson, L. B. Agellon, and D. E. Vance. 1997. 'Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase', Proceedings of the National Academy of Sciences of the United States of America, 94: 12880-85.
Wanders, R. J., and P. Brites. 2010. 'Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem', Clinical Lipidology, 5: 379-86.
Wang, Y-F, G-L Lee, Y-H Huang, and C-C Kuo. 2016. 'sn-1,2-diacylglycerols protect against lethal endotoxemia by controlling systemic inflammation', Immunobiology, 221: 1309-18.
Want, E. J., P. Masson, F. Michopoulos, I. D. Wilson, G. A. Theodoridis, R.S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson. 2013. 'Global metabolic profiling of animal and human tissues via UPLC-MS', Nature Protocols, 8: 17-32.
Watson, A. D. 2006. 'Lipidomics: a global approach to lipid analysis in biological systems', Journal of lipid research, 47: 2101-11.
West, J. A. A., G. Pakehham, D. Morin, C. A. Fleschner, A. R. Buckpitt, and C. G. Plopper. 2001. 'Inhaled naphthalene causes dose dependent Clara cell cytotoxicity in mice but not in rats', Toxicology and Applied Pharmacology, 173: 114-19.
Worley, B., and R. Powers. 2013. 'Multivariate analysis in metabolomics', Current Metabolomics, 1: 92-107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64504-
dc.description.abstract萘是一種廣泛存在於環境中的空氣汙染物,其最主要的來源是各種形式的不完全燃燒,例如二手煙、交通廢氣及工廠排放。萘產生物種及器官特定的毒性,文獻指出萘的急性暴露造成小鼠呼吸系統傷害,特別在小鼠肺部的克氏細胞出現腫脹、空泡化,甚至壞死等現象,且具有劑量效應關係。脂質是組成細胞膜的主要成分,同時也參與了包含細胞間訊息傳遞等多項生理功能,過去本實驗室的研究也觀察到萘暴露造成小鼠肺臟與肺部灌洗液中的含磷酸膽鹼脂質擾動。本研究應用高效能液相層析搭配四極柱串聯飛行時間質譜儀為基礎的脂質體學,以非標的分析方式觀察經不同劑量之萘處理後的小鼠血清,嘗試進一步篩查更多脂質類別的擾動情形來了解萘所引發的毒性反應。
為了優化本實驗室目前使用的分析平台,本研究的第一部分測試了管柱長度、溫度、層析梯度設定以及一級質譜掃描頻率等儀器設定條件,並成功地在維持大量特徵訊號的同時大幅縮短了分析時間。標準品表現顯示此系統能有效偵測甘油脂、甘油磷脂、鞘脂等多種脂質,超過90%特徵訊號的相對標準差小於20%也顯示此分析系統具有良好穩定性。
第二部分則應用優化後的分析平台對萘暴露小鼠血清中的脂質體進行篩查。使用七週大的雄性ICR小鼠,分成對照組、低劑量與高劑量暴露組,分別以腹腔注射施予以橄欖油為載體、劑量為0、100、200 mg/kg body weight的萘。小鼠於暴露後24小時犧牲,抽取血清樣品並萃取脂質後上機分析。偏最小平方判別法結果顯示三組間有明顯的分群。磷脂醯膽鹼在萘引起的小鼠血清顯著改變脂質中所占比例最高;而改變幅度最大的則是磷脂醯絲氨酸。此外,本研究也觀察到包含磷脂醯乙醇胺、神經醯胺、三酸甘油脂在內等多種脂質擾動,變動方向與幅度依據之質類別不盡相同,並可能與萘所造成的傷害或生物體對發炎反應的調控相關。
此優化後的分析平台未來能應用於不同器官或生物液樣本的脂質成分研究。本研究對萘暴露小鼠血清中的多類別脂質進行了廣範圍篩查,能夠更全面的了解萘所造成的脂質效應,幫助我們進一步了解其背後的可能毒性機制,同時應用於生物標誌物的開發。
zh_TW
dc.description.abstractNaphthalene, an air pollutant widely present in the environment, came from various forms of incomplete combustion, such as second-hand smoke, traffic exhaust and factory emissions. Toxicity induced by naphthalene is species- and organ-specific. Literatures pointed out that acute exposure to naphthalene caused respiratory toxicity in mice, especially swelling, vacuolation, and necrosis of Clara cells in mouse lungs with dose-response effects. Lipids are the main components of cell membranes, and also participating in various physiological functions. Previously, our group had also observed naphthalene-induced perturbation of phosphocholine-containing lipids in the mouse lungs and bronchoalveolar lavage fluid. Ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer based lipidomics was applied in this study to examine serum from mice treated with different doses of naphthalene. We aim to profile the perturbation of more lipid classes to understand the molecular events of naphthalene.
The first part of present study tested the instrumental conditions such as column length, temperature, gradient settings, and mass spectrum acquisition rate to optimize the analysis platform currently used in our group. We successfully shortened the analysis time while maintaining a large feature amount. Lipid standard performance showed that this system could effectively detect various lipids such as glycerolipids, glycerophospholipids, and sphingolipids. More than 90% of features showed the coefficient of variation less than 20%, indicating well-stability in the system.
In the second part, the optimized analytical platform was applied to profile the lipids in the serum of naphthalene-treated mice. 7-week-old male ICR mice were divided into control group, low-dose, and high-dose exposure group. 0, 100, and 200 mg/kg body weight of naphthalene was treated with olive oil as a carrier by intraperitoneal injection. Mice were sacrificed 24 hours after exposure and serum samples were taken for lipid extraction and analysis. The score plot of partial least squares discriminant analysis showed that three groups separated clearly. Glycerophosphocholines accounted for the highest proportion of naphthalene induced significantly changed lipids in mouse serum; and the most dramatic changed lipids were glycerophosphoserines. Meanwhile, the disturbances of various lipid classes including glycerophosphoethanolamines, ceramides, and triacylglycerols were observed. These disturbances might be related to the naphthalene induced damage or the organism's regulation of the inflammatory responses.
This optimized analytical platform can be applied to investigate the lipid composition and changes in different organs or biological fluids in the future. Present study profiled a wide range of lipid classes in naphthalene-treated mouse serum to provide a more comprehensive understanding of naphthalene induced lipid effects. These results may help us further explore the possible toxicity mechanisms of naphthalene, and also provide knowledge for biomarker development.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:51:10Z (GMT). No. of bitstreams: 1
ntu-109-R06844010-1.pdf: 3374500 bytes, checksum: f4265b4574830b5f5a04b5a6d7ca215c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Content v
List of figures vii
List of tables viii
Chapter 1 Introduction 1
1.1 Naphthalene 1
1.1.1 The physicochemical properties of naphthalene 1
1.1.2 Naphthalene toxicity 1
1.2 Lipids and lipidomics 3
1.2.1 Classification and naming of lipids 3
1.2.2 Lipid characteristics 3
1.2.3 Lipidomics 4
1.3 Study aims 6
Chapter 2 Materials and Methods 7
2.1 Flow chart 7
2.2 LC-MS lipidomic platform optimization 8
2.2.1 Animal handling and serum sample collection 8
2.2.2 Sample preparation 8
2.2.3 Instrumental optimization and data acquisition 9
2.2.4 Lipid standard identification 11
2.2.5 Data processing 11
2.2.6 Assessment criterions 12
2.3 Application the platform to examine serum lipid profiles from mice treated with naphthalene 13
2.3.1 Serum sample collection 13
2.3.2 Sample preparation for naphthalene-treated mouse serum lipid profiling experiment 13
2.3.3 MS data acquisition 14
2.3.4 Data processing for naphthalene-treated mouse serum lipid profiling experiment 14
2.3.5 Data analysis for naphthalene-treated mouse serum lipid profiling experiment 15
2.3.6 Lipid identification for naphthalene-treated mouse serum lipid profiling experiment 16
Chapter 3 Results 18
3.1 LC-MS lipidomic platform optimization 18
3.1.1 Lipid standard performance in optimization experiments 18
3.1.2 Stable feature numbers of qualified LC-MS condition settings 19
3.2 Serum lipid profiles from mice treated with naphthalene 22
3.2.1 Lipid standard performance 22
3.2.2 Lipid profiles in the mouse serum 22
3.2.3 Serum lipid changes after naphthalene treatment 23
Chapter 4 Discussion 26
4.1 Instrumental condition optimization 26
4.2 Lipid profiling of serum from mice treated with naphthalene 26
4.2.1 Overall lipidome disturbance after naphthalene treatment 26
4.2.2 Naphthalene treatment induced GPs disturbance in the mouse serum 27
4.2.3 Naphthalene treatment induced SPs disturbance in the mouse serum 33
4.2.4 Naphthalene treatment induced GLs disturbance in the mouse serum 35
4.2.5 Naphthalene treatment induced FAs and STs disturbance in the mouse serum 36
4.3 Strengths, limitations, and future works 38
Chapter 5 Conclusion 40
References 41
Appendix 75
dc.language.isoen
dc.subject血清zh_TW
dc.subject生物標誌物zh_TW
dc.subject毒性zh_TW
dc.subject質譜儀zh_TW
dc.subject脂質體學zh_TW
dc.subjectlipidomicsen
dc.subjectnaphthaleneen
dc.subjectmass spectrometeren
dc.subjectserumen
dc.subjecttoxicityen
dc.subjectbiomarkersen
dc.title應用基於質譜儀的脂質體學探討萘對小鼠血清中脂質的影響zh_TW
dc.titleMass spectrometry based lipidomics to study lipid effects of naphthalene in the mouse serumen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.coadvisor陳家揚(Chia-Yang Chen)
dc.contributor.oralexamcommittee鄭尊仁(Tsun-Jen Cheng),唐川禾(Chuan-Ho Tang)
dc.subject.keyword?,脂質體學,質譜儀,血清,毒性,生物標誌物,zh_TW
dc.subject.keywordnaphthalene,lipidomics,mass spectrometer,serum,toxicity,biomarkers,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202000617
dc.rights.note有償授權
dc.date.accepted2020-02-27
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved